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INTRODUCTION 
Although processor scheduling has been 
studied for more than ten years, most of 
the effort in this area has taken place dur- 
ing the last five years. Many of the proces- 
sor scheduling techniques in use today 
have been adapted from older, well-estab- 
lished results developed in management 
science and operations research studies. 
These studies have been concerned with 
the utilization of people, equipment, and 
raw materials. If raw materials are 
equated with computer programs, and if 
people and equipment in their role of proc- 
essors of these raw materials are equated 
with processors in computer systems, then 
the rationale for the adaptation of man- 
agement science and operations research 
techniques is apparent. 

In this discussion terminology will be 

* This work was performed while at the Computer 
Sciences Department, Northwestern University, 
Evanston, Illinois 60201. 

based on computer system components, 
and reference to the assembly-line coun- 
terparts of these components will be made 
only sparingly. However, it is emphasized 
here that the scheduling contributions 
made by non-computer-oriented investiga- 
tors play a very prominent part in the 
totality of results in the area of processor 
scheduling. As evidence of this, many of 
the results related here have been dis- 
cussed by Conway, Maxwell, and Miller 
[11] in their book on the theory of schedul: 
ing. For the most part, this book is based 
on the study of job-shop scheduling prob- 
lems, i.e., those problems that use the ter- 
minology of manufacturing: job, machine, 
operation, routing, and processing time. 
The recent book edited by E. G. Coffman, 
Jr. [42] is oriented toward computer sys- 
tems and is designed to present a complete 
update of recent results in computer and 
job-shop scheduling theory. Coffman's 
book covers all of the subjects discussed in 
this survey in a much more comprehensive 
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manner; in addition, many results and 
topics not addressed in this survey or else- 
where are fully explored. 

Throughout this survey the scheduling 
problems to be examined are expressed in 
terms of deterministw models. By this we 
mean that  all the information required to 
express the characteristics of the problem 
is known before a solution to the problem 
(i.e., a schedule) is attempted. The objec- 
tive of the resultant schedules is to opti- 
mize one or more of the evaluation crite- 
ria. The motivation for this objective is 
that  in many situations a poor schedule 
can lead to an unacceptable response to 
timing requirements or to an unacceptable 
utilization of resources. This discussion 
shows that it is often impossible or prohibi- 
tively expensive to obtain the best possible 
solution. In such situations heuristic solu- 
tions must  be used. Many of these approxi- 
mate solutions are examined in this sur- 
vey. 

1. GENERAL CONCEPTS 

Background 

Processor scheduling implies that  jobs or 
tasks (i.e., code segments) are to be as- 
signed to a particular processor for execu- 
tion at a particular time. Because many 
tasks or jobs (these two terms will be used 
interchangeably) can be candidates for ex- 
ecution, it is necessary to represent the 
collection of jobs in a manner which con- 
veniently represents the relationships 
among the jobs. A directed graph orprece- 
dence graph representation is probably the 
most popular representation in the sched- 
uling literature. (For other representa- 
tions see [2]). Figure 1 shows one of several 
possible equivalent representations for a 
set of jobs or tasks. The nodes in these 
graphs can represent independent opera- 
tions or parts of a single program which 
are related to each other in time. 

By inspecting Fig. 1, several pertinent 
observations can be made. First, the col- 
lection of nodes represents a set of tasks T 
= {T,..-, Tr}. The directed paths between 
nodes imply that  a partial ordering or 
precedence relation < exists between the 
tasks. Thus if Tt < Tj, task T, must  be 
completed before Tj can be initiated. 1 In 
Fig. 1, for example, T1 < T2, T1 < T3, T4 < 
TT, and T5 < TT. Associated with each node 
is a second number which refers to the 
time required by a hypothetical processor 
to execute the code represented by the 
node. We thus speak of a function re: T --* 
(0, ~). The program graph can then be 
represented by the triplet (T, re, <). If the 
processors are identical, then any task can 
be run on any processor provided that  its 
precedence requirements are satisfied. 
Figure 1 contains no information regard- 
ing the number of processors available for 

i A number of ways of mdwating tha t  "T~ precedes  
T~" are given m the hterature.  Inc luded  among 
these are T, < T~, T~ < T~, T, > Tj, and T, ( Tj~ Most 
authors are careful to mdmate the meaning of a 
p_artlcular symbol. However, if T~ indeed precedes 
%, then T~ must  be executed earher  than  Tj. Thus 
the symbol "<" to mdmate an earher  or lesser time 
would appear to be the most appropriate symbol, 
and probably the most commonly used symbol. To 
distinguish this symbol from the usual "less than" 
symbol ,  a dot reside the symbol may be added to 
mimmize possible confusion. 
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FIGURE 1 Representation of a set of tasks. 

the execution of the task-set T. The num- 
ber of processors, of course, directly deter- 
mines the amount of time required to exe- 
cute the tasks in T although, as will be 
discussed later, it is not necessarily true 
that  execution time is inversely propor- 
tional to the number of processors. Among 
the many classification criteria, however, 
the number of processors represents the 
single most important factor in developing 
optimal or suboptimal schedules. 

Further  inspection of Fig. 1 leads to ad- 
ditional observations. Notice that  the 
graph as shown is acyclic, i.e., there are no 
loops or cycles in it. A cycle in the graph 
would prevent the static scheduling of the 
graph (i.e., a scheduling performed prior 
to execution time) since the conditional 
which controls the number of iterations 
cannot be resolved until execution time. 
Most published work on processor schedul- 
ing either explicitly or implicitly ignores 
the difficulties presented by loops through 
the assumption that the entire loop can be 
contained within a single node in the 
graph. 

Notice also that  the graphs of Fig. 1.1 
contain no conditional or decision nodes. 
A decision node is a node whose execution- 
time outcome can affect the flow of control 
in a program (e.g., a data-dependent 
branch). This assumption is common to 
most of the literature on this subject. If the 
outdegree of a node (the number of edges 
emanating from a node) is n, n > 1, then 
the n nodes which are immediate succes- 
sors of the node cannot be initiated until 
the computations represented by the node 
are completed. Similarly, a node with an 
indegree (the number of edges incident to 

the node) greater than one must  wait  for 
the completion of all its immediate prede- 
cessors before it can be initiated. The 
scheduling techniques addressed in this 
paper will be based on the two conditions 
cited above: the absence of loops and the 
absence of decision nodes. (A great  deal of 
effort has been invested in the modeling of 
computational sequences which do not rely 
on these assumptions; for a detailed dis- 
cussion of that  subject refer to [2].) 

A graph of the form shown in Fig. 1 is 
referred to as a single-entry-node single- 
exit-node connected graph, or SEC. In 
many references, however, the graph un- 
der investigation is of the form shown in 
Fig. 2. 

Classification Categories 

The discussion which follows is based on 
whether a program graph is to be proc- 
essed by one processor or a system contain- 
ing more than one processor. The decision 
to categorize schedules in this manner is 
not obvious, in view of the large number of 
factors that  can be used for classification. 
The following discussion will identify 
these factors and show how the present 
system of classification evolved. 

Number of Processors 

Traditionally, sing]e-processor systems 
have overwhelmingly dominated com- 
puter system installations. However, the 
search for higher computational band- 
widths through the use of several proces- 
sors has been in progress since before the 
so-called single-instruction-stream single- 
data-stream (SISD) organization reached 
maturity.The realization of large-scale in- 
tegration and a desire for more reliable 
computation have given further impetus 

FIGURE 2. A task set with multiple miha l  tasks. 
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to the utilization of multiprocessor organi- 
zations. As this discussion will show, how- 
ever, nonenumerative optimal schedules 2 
have been generated for only a limited 
number of cases. 

Task Duration 

In the previous section, we indicated that 
the nodes of a program graph can repre- 
sent tasks of equal or unequal duration. In 
the case of equal task duration, all the 
tasks can be said to have a duration or 
execution time requirement of one unit. 
(The term "unit" is used here to represent 
the time required to execute a given num- 
ber of instructions.) 

In the treatment of tasks of unequal du- 
ration, a common practice is to assume 
that all tasks can be subdivided into inte- 
ger multiples of the smallest of the origi- 
nal tasks. In this discussion, however, we 
consider as a separate category program 
graphs for which the subdivision of tasks is 
not allowed. 

Precedence Graph Structure 

The individual nodes within a graph can 
be related to each other in a number of 
different ways. For example, it is possible 
for all tasks to be independent of each 
other. In this situation we say that there is 
no precedence or partial ordering between 
tasks. In other situations it is necessary to 
structure the graph of a program in such a 
way that every node in the graph has at 
most one predecessor or at most one suc- 
cessor. Another possibility allows the exis- 
tence of a general precedence structure for 
which the previous restrictions do not ap- 
ply. Each of these conditions is examined 
in the following discussion. 

Task Interrupttblfity 

If the interruption (and subsequent re- 
sumption) of a task before its completion is 
permitted, we speak of apreemptive sched- 
ule. If interruption before task completion 

2 An enumerat ive schedule is one in which all possi- 
ble solutions are obtained and the best one m se- 
lected. 

is not permitted, we speak of a nonpreemp- 
tive or basic schedule. In general, preemp- 
tive disciplines generate schedules that 
are better than those generated by non- 
preemptive disciplines. It is also true, 
however, that a certain penalty exists for 
preemptive schedules that does not exist in 
the nonpreemptive case. This penalty lies 
in the task-switching overhead, which 
consists of system interrupt processing and 
the additional memory required to pre- 
serve the state of the interrupted task. 
This overhead may be acceptable if it oc- 
curs infrequently; in an environment in 
which preemption occurs frequently, how- 
ever, unacceptable performance degrada- 
tion maxy result. 

Processor Idleness 

As subsequent discussion will show, a 
given measure of performance can often be 
improved by deliberately idling a proces- 
sor. Determining when this should be 
done, however, can lead to significant in- 
creases in the complexity of a scheduling 
algorithm. In a "greedy" processor envi- 
ronment, no idle time is inserted into a 
schedule, and a pending task is begun as 
soon as a processor is available. 

Job Periodicity 

The overwhelming majority of investiga- 
tions reported in the literature and exam- 
ined here deal with only a single execution 
of a set of jobs or tasks that is expected to 
be repeated at irregular intervals over a 
long period of time. The analysis required 
to generate optimal or near-optimal sched- 
ules can be significant, but it is justified by 
the time saved during each of these many 
executions. During this time the code that 
represents these tasks is unmodified, al- 
though modifications to the data processed 
by the code are permitted and perhaps rep- 
resent the rule rather than the exception. 
However, the measure used to evaluate 
the performance of the set is considered 
only for a single execution of each element 
of the set. 

Recently, however, consideration has 
been given to the use of one or more proc- 
essors in a control environment. An envi- 
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ronment of this type can be characterized 
by a set of tasks each of which has a known 
execution frequency and processing time. 
The scheduling problem in this environ- 
ment is especially difficult for two reasons: 
time and frequency requirements can be 
different for each task in the set of periodic 
tasks, and in some cases little or no devia- 
tion is permitted in the scheduled initia- 
tion time (and consequently the comple- 
tion time) of each iteration of each task. 

Presence or Absence of Deadlines 

A number of performance measures have 
been developed to evaluate the behavior of 
schedules. In most cases, only the behavior 
of the entire schedule or the entire job-set 
is considered. In other cases, however, 
deadlines or scheduled completion times 
are established for individual members of 
the task-set. If there is some slack or spare 
time associated with the completion of 
time of individual tasks and this slack 
time is bounded, we speak of a hard dead- 
line or a hard real-time schedule. If the 
slack time is based on a statistical distri- 
bution of terminations we speak of a soft 
deadline or a soft real-time schedule. 
Schedules with deadlines appear most fre- 
quently in connection with periodic job 
schedules. 

Resource-Limited Schedules 

Most of the effort to date on processor 
schedules has assumed the unlimited 
availability of whatever additional re- 
sources are necessary to support multiple 
processors in execution. Although it is not 
usually mentioned, the processors them- 
selves have been implicitly assumed to be 
members of a (not usually limited) re- 
source class. 

Recently, however, consideration has 
been given to the generation of schedules 
in which individual tasks explicitly indi- 
cate requirements for elements of one or 
more resource classes. Aside from the 
processor itself, the resource class which 
most readily comes to mind is memory. 
Most references assume that  sufficient 
memory is available to contain the code 
and the data required by each of the tasks 

assigned to a particular processor. In sys- 
tems in which a single main memory is 
shared, this implies that  the total memory 
requirement of the set of tasks does not 
exceed the size of the main memory. With 
the emergence of distributed systems in 
which a processor can access both a local 
memory and a shared memory, resource 
considerations become particularly signifi- 
cant. Of course, memory is not the only 
system resource which can be available in 
limited amounts. The theory resulting 
from resource-limited models can be ex- 
panded to include a multiplicity of re- 
sources. 

Homogeneous versus Heterogeneous 
Processors 

Along with investigations in resource-lim- 
ited schedules, consideration of nonidenti- 
cal or heterogeneous multiprocessor sys- 
tems represents the latest effort in what  is 
now considered a mature field of investiga- 
tion. Considerations of processor nonho- 
mogeneity will become particularly signifi- 
cant as multiple-processor systems assume 
a bigger share of the total data-processing 
load. The ability to have different proces- 
sors in a set of processors implies that  
system upgrades can be accomplished us- 
ing state-of-the-art components, i.e., that  
a processor (failed or otherwise) can be 
replaced, or a processor can be added to the 
system, without having to restrict the re- 
placement or addition to a replica of the 
original equipment. This is particularly 
significant if, as is usually the case, 
cheaper, smaller, and more capable re- 
placements for the original equipment are 
available. 

Measures of Performance 

As suggested by the preceding discussion, 
a number of measures have been devel- 
oped to evaluate the effectiveness of proc- 
essor schedules. The five measures most 
often cited in the literature are listed be- 
low in approximate order of popularity; 
this survey will concentrate on the first 
three (a number of other measures are 
discussed in [11, Chapter 2]): 

1) minimize finishing or completion 
time; 
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2) minimize the number of processors 
required; 

3) minimize mean flow time; 
4) maximize processor utilization; 
5) minimize processor idle time. 
In Fig. 3 we display schedules with tim- 

ing diagrams known as Gantt charts. In 
this schedule three processors are re- 
quired. The tasks assigned to each proces- 
sor and their order of execution and execu- 
tion time requirements are represented by 
the horizontal lines and task identifica- 
tions adjacent to each processor. The com- 
pletion or finishing time (denoted by o~ in 
this survey) for the schedule illustrated is 
7. The flow time of a task is equal to the 
time at which its execution is completed. 
The flow time of  a schedule is defined as 
the sum of the flow times of all tasks in the 
schedule. For example, the flow times of 
tasks T1 and T4 in Fig. 3 are 7 and 4, 
respectively, while the flow time of the 
schedule is 25.5. The mean flow time is 
obtained by dividing the flow time by the 
number of tasks in the schedule. The utili- 
zation (or utilization factor) of P1, P2, and 
P3 is 0.93, 1.00, and 0.86, respectively. 
These utilization values are obtained by 
dividing the time during which the proces- 
sor was actively engaged in execution by 
the total time during which it was availa- 
ble for execution. The idle time of P1, P2, 
andP3 is 0.5, 0.0, and 1.0, respectively. 

The rationale behind the minimization 
of finishing or completion time is that  sys- 
tem throughput can be maximized if the 
total computation time of each set of tasks 
is minimized. Throughput is defined as 
the number of task sets processed per unit  
of time (e.g., per hour) and is therefore 
inversely proportional to the sum of the 
computation times of individual task-sets. 

Minimizing the number of processors re- 
quired can be justified for at  least two 
reasons. The first and most obvious is cost. 
The second and not so obvious reason is 

PI TI T 2 

P2 T 2 T I 

T3 I T4 ', ! T5 P3 
| ! ! ! 

0 1 2 3 4 5 6 7 

FmURE 3. Task schedule in Gantt chart form. 

this: if the number of processors required 
to process a set of tasks in a given time is 
less than the total number of processors 
available, then the remaining processors 
can be used as backup processors for in- 
creased reliability and as background 
processors for noncritical computations. 

Minimizing the mean flow time is re- 
lated to the extent to which tasks occupy 
system resources other than processors, 
memory in particular. The shorter the 
time during which a set of tasks occupies 
memory, the greater the amount  of time 
that  is available for other tasks to occupy 
that same memory. (The analogy in a job- 
shop environment is the amount  of ware- 
house space occupied by raw materials 
that  are to be converted into finished prod- 
ucts, i.e., the inventory [3].) Thus flow 
time is an indirect measure of system 
throughput. 

Efficiency of Algorithms 

A key issue in the study of processor sched- 
uling is the amount of computation time 
needed to locate a suitable schedule. For 
our purposes we shall say that  an efficient 
algorithm is one which requires an 
amount of time that  is bounded in the 
length of its input by some polynomial. An 
~nefficient algorithm is one which essen- 
tially requires an enumeration of all possi- 
ble solutions before the best solution can 
be selected. Solutions of this type can be 
characterized by algorithms whose run- 
ning times are exponential in the number 
of jobs to be scheduled. For most of the 
problems of interest in processor schedul- 
ing, no efficient algorithm is known; in 
fact, it is known that  if an efficient algo- 
ri thm for these problems could be con- 
structed, then an efficient algorithm could 
be constructed for a large family of seem- 
ingly intractable problems [53, 54]. That 
is, it is known that  these problems are NP- 
hard. 

By saying that  a problem is NP-hard we 
mean that  it is at  least as difficult to com- 
pute as the hardest problem in the family 
NP, which is the family of problems capa- 
ble of being solved by nondeterministic al- 
gorithms in polynomial time. It includes 
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such problems as whether or not a proposi- 
tional formula is satisfiable, whether or 
not a graph possesses a clique of a given 
size, and a version of the well-known trav- 
eling salesman problem. After years of ef- 
fort, research has failed to find a (deter- 
ministic) algorithm that  solves any one of 
these problems in polynomial time. 

2. SINGLE-PROCESSOR SCHEDULES 

In the single-processor schedules consid- 
ered here, all candidate tasks are simulta- 
neously available for execution, the exact 
characteristics of each of the tasks are 
known and remain constant throughout 
the lifetime of the task, and a particular 
performance measure is specified, e.g., 
minimization of the maximum completion 
time. Thus schedules considered in this 
section do not include the type of problem 
addressed by multiprogrammed or time- 
shared computer systems, since the exact 
characteristics of the tasks processed by 
these systems are not known in advance. 
The results related here have their origins 
in one of two environments: a job-shop or a 
process-control environment. Tasks in 
both environments are usually considered 
to be independent; the results in the proc- 
ess-control environment are for periodic 
jobs only. 

Job-Shop Results 

An environment consisting of n simultane- 
ously available jobs or tasks of known 
characteristics and one machine (i.e., one 
processor) 3 is considered by Conway, Max- 
well, and Miller [11] as the simplest sched- 
uling problem. In their text the authors 
relate several important results for sched- 
ules of this type. 

1) In scheduling n independent tasks on 
a single processor, it is not necessary to 
consider schedules which involve either 
preemption or inserted idle time. Thus a 
regular measure of performance cannot be 
improved by preempting (and subse- 
quently resuming) an active task or by 

3 In job-shop l i tera ture  the  term "machine" is usu- 
ally used for a pmce of eqmpment  t ha t  performs a 
par t icular  operation. In keeping with the theme of 
this  survey, the  term "processor" will be used here. 
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idling the processor at  any time prior to 
the completion of the n tasks. (A regular 
measure is a value to be minimized that  
can be expressed as a function of the task 
completion times and that  increases only if 
at  least one of the completion times in- 
creases.) 

2) The maximum flow time for this type 
of schedule is simply the sum of the n 
completion times and is the same for each 
of the n! possible sequences. 

3) The mean flow time of a schedule of 
this type is minimized by sequencing the 
jobs in order of nondecreasing processing 
time. Scheduling in this manner  is re- 
ferred to as shortest.processing-time se- 
quencing (SPT), and the authors refer to 
this type of sequencing as the most impor- 
tant  concept in the entire subject of se- 
quencing. 

To illustrate the concept, consider the 
scheduling on a single processor of the six 
independent tasks shown in Fig. 4. This 
figure also shows a Gantt  chart  represen- 
tation of one of the 6! possible schedules for 
this set of tasks. It  will be seen that  the 
maximum flow time equals 25 units, the 
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FmURE 4. Determinat ion of f low time. (a) Gantt 
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same as the maximum completion time. In 
order to determine the mean flow time (F), 
it is more convenient to represent the 
schedule in the manner shown in Fig. 4b. 
The total area of this graph, including the 
labeled blocks and the area under the 
blocks, represents the sum of the task flow 
times. Ft, the flow time of the i th task in 
the sequence, is defined as 

I 

Ft = ~PL~, 
J f f i l  

where PL~ represents the processing time 
of the task occupying t he j  ~h position in the 
schedule. (In words, the flow time of a task 
is simply its finishing or completion time.) 
The mean flow time is defined as 

For the example of Fig. 4b,/~ = 16. If  the 
tasks of this illustration are rearranged to 
form an SPT schedule as shown in Fig. 4c, 
then ~' = 11. 

A related observation is that  longest- 
processing-time sequencing (LPT) maxi- 
mizes whatever SPT minimizes. Schedul- 
ing procedures which produce opposite se- 
quences in an n-task, single-processor 
problem are called antithetical. 

In related discussions, Maxwell, Con- 
way, and Miller also provide results for 
situations in which 1) only average, ex- 
pected, or estimated processing times are 
given; 2) priorities are assigned to individ- 
ual tasks; and 3) all tasks are not simulta- 
neously available but  instead arrive inter- 
mittently. 

Multiprogramming with Hard Deadlines 

The subject matter  of this section is the so- 
called time-critical process in a process- 
control environment. A time-critzcal proc- 
ess is a periodic task of known frequency 
and execution time. Each activation of a 
task must  be completed within the inter- 
val defined by the frequency, and activa- 
tion of a task can be considered to be sig- 
nalled by the presence of an external inter- 
rupt. A collection of these processes can 
represent the totality of computations that  
must  be performed in order to satisfy the 

control demands of a particular real-time 
environment. (An example of this type of 
environment is the monitoring and setting 
of temperatures,  pressures, and fuel con- 
sumption rates in a refinery.) From the 
point of view of the processing load, the big 
difference between this and a conventional 
multiprogramming system is that  the ex- 
act nature of the total set of required com- 
putations is known beforehand. In addi- 
tion, response within a set of fixed limits 
must be guaranteed; it is not permissible 
to say, as one can with the typical system, 
that  '<most responses will occur within x 
seconds." 

Two independent research efforts in this 
area (Serlin [36] and Liu and Layland [25]) 
have yielded very similar results. The 
starting point of the discussion is the time- 
critical process (TCP) illustrated in Fig. 5 
[36]. In this model, E represents the re- 
quired execution time of one iteration of 
the process. The time r, sometimes called 
the frame time, is the repetition period, 
i.e., the period between successive occur- 
rences of the interrupt signal associated 
with the process, and d is the deadline of 
the computation. In practice, d usually 
equals r. An overflow is said to occur when 
the arrival of an interrupt signals the ini- 
tiation of an iteration of a TCP before the 
previous iteration of that  same TCP has 
terminated. The problem addressed here is 
that  of scheduling a number of TCPs on a 
single processor in a manner which guar- 
antees that  no overflow will occur. A 
schedule is said to be feasible if the tasks 
are arranged so that  an overflow never 
occurs [25]. 

In this model it is assumed that  all tasks 
are independent, and the tasks perform no 
I/O. Since some tasks will have a higher 
execution frequency than others, it will 
sometimes be necessary to interrupt and 

FIGURE 5 

i~terrupts ~I I 
I I 

I_ d _1 i 

E -' J 
Model of a time-critical process (TCP) 
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subsequently resume the execution of a 
lower-frequency task (i.e., the lower-fre- 
quency task is preemptible) in order to 
guarantee the deadline of a higher-fre- 
quency task. For example, Fig. 6 shows 
two tasks T~(r~ = 2, E 1 = 1) and T2(T 2 = 
0.5, E2 = 1), with T1 having the higher pri- 
ority. Figure 6a shows a feasible assign- 
ment, and Fig. 6b shows that  E2 can be 
increased to at most 2. If  T2 is given the 
higher priority, then neither E~ nor E2 can 
be increased beyond 1, as shown in Fig. 6c. 

According to Serlin an efficient CPU al- 
location algorithm is one that  awards suf- 
ficient processor time to a TCP for it to 
meet its deadline while minimizing forced 
idle time. (Forced idle time is time during 
which the CPU must  be idle in order to 
accommodate the occasional worst-case 
condition.) Liu and Layland seek to find 
the largest possible utilization factor while 
guaranteeing that  all tasks meet  their 
deadline. The utilization factor U (referred 
to as the "load factor" by Serlin) for a set of 
n TCPs is defined as 

V -- ~ Et /Tt .  
, = 1  

Serlin [36] and Liu and Layland [25] 
obtained the same optimal result  for a 
fLxed-priority scheme in which a task of 
frequency f~ has a higher priority than a 
task of frequency/~ iff~ > f~. Liu and Lay- 
land refer to a fixed-priority scheme of this 
type as a rate monotonic priority (RMP) 
assignment, while Serlin calls it the intel- 
ligent fixed priority (IFP) algorithm. Both 
sets of authors have shown that  for this 
scheme the least upper bound to the utili- 
zation factor is U = n(T/n - 1), where n is 
the number of TCPs. This result  means 
that  the permissible sum of the individual 
load factors must  be considerably less than 
1 in order to guarantee that  each TCP 
meets its deadline. For large task-sets, 
more than 30% of the CPU must  remain 
idle. This scheme is optimum in the sense 
that  no other fLxed-priority assignment 
rule can schedule a task-set that  cannot be 
scheduled by the IFP or RMP algorithms. 

The assignment rule discussed above is 
a fLxed or static rule in that  the relative 
priority of the tasks is based on the task 

0 ' 2 3 4 5 0 ~ v2 3 4 ; 

,r---!, , ! ! ! ! 
(a) (b) 

~2 [ - - I  

'0 '1 ~ '3 i ; 
T, ! ! , , 

(c) 
Fmua~ 6. Schedules for two time-critical proc- 

esses. (a) A feasible assignment when TI has 
higher priority than T~; (b) Another feasible as- 
signment when T, has higher priority than T~; (c) 
Only feasible assignment if T2 has higher priority 
than T, 

frequencies and does not change during 
execution. Both of the studies discussed 
here have developed dynamic algorithms 
in which priorities are permitted to change 
and which permit 100% processor utiliza- 
tion. Liu and Layland's rule is called the 
deadline-driven scheduling algorithm. 
Serlin discusses a similar algorithm devel- 
oped by M. S. Fineberg [13]. In both of 
these algorithms, priorities are reeval- 
uated every time that  a task-initiating in- 
terrupt arrives at the system. Highest 
priority is given to the task whose deadline 
is the nearest, and lowest priority is given 
to the task whose deadline is the farthest 
away from the current time. This applies 
only to those tasks whose computation for 
the current frame has not yet  been com- 
pleted. Coffman [42] refers to a relative 
urgency algorithm in which priorities are 
reevaluated at each instant of time. 

Serlin also speaks of the minimal time 
slicing (MTS) algorithm based on what he 
calls scheduling intervals. A scheduling 
interval is the time between the occur- 
rence of an interrupt and the occurrence of 
the first deadline beyond the interrupt. 
During this interval each task  with an 
incomplete computation is given a CPU 
burst  whose duration is directly propor- 
tional to the percentage of the overall utili- 
zation factor contributed by the load factor 
of the task. This approach guarantees that  
all tasks will meet their deadlines, but  its 
success depends on a small context-switch- 
ing time. 

Liu and Layland discuss a mixed sched- 

Computing Surveys, VoL 9, No. 3, September 1977 



182 * M. J. Gonzalez, Jr. 

uling algorithm which is a combination of 
the fixed- and dynamic-priority algo- 
rithms. For a set of n tasks, the k tasks 
having the shortest periods are scheduled 
according to the fixed-priority-rate mono- 
tonic scheduling algorithm, and the re- 
maining tasks are scheduled according to 
the deadline-driven scheduling algorithm 
when the processor is not occupied by the 
first k tasks. According to the authors this 
algorithm does not always achieve 100% 
utilization but appears to provide most of 
the benefits of the deadline-driven sched- 
uling algorithm. At the same time it may 
be more readily implementable, since the 
static scheduling of the k tasks is compati- 
ble with interrupt hardware that  acts as a 
fixed-priority scheduler. 

3. FLOW-SHOP SCHEDULES 

After considering single-processor sched- 
ules, it would seem natural  to consider 
multiprocessor schedules. However, there 
is a class of schedules - the  so-called flow- 
shop schedu les - in  which more than one 
processor is involved in the cooperative 
execution of a set of tasks, and in which a 
sequential relationship exists between the 
processors. (This is not the case with mul- 
tiprocessor schedules.) Thus, a task to be 
executed must  be processed first by one of 
the processors and then by the other(s). 
This ordering must  be observed for all the 
tasks to be executed, and there is no reo 
quirement that  the processors be identical. 

The origin of this kind of schedule is 
once again the job-shop environment,  in 
which a job must  be sequenced through a 
set of machines that  perform unique oper- 
ations. The analogous situation in a com- 
puter environment is a task requiring a 
series of CPU and I/O bursts. The ordering 
of these bursts corresponds to a sequencing 
through a set of machines in which the 
number of different machines is small. 

As indicated by Conway, Maxwell, and 
Miller, probably the most frequently cited 
paper in the field of scheduling is John- 
son's solution to the two-machine flow- 
shop problem [21]. Johnson's algorithm se- 
quences n jobs, all simultaneously availa- 
ble, in a two-machine flow-shop so as to 
minimize the maximum flow time. Using 

the Conway ~, Maxwell, and Miller termi- 
nology and notation adopted from John- 
son, we say that  each task consists of a 
pair (A,, B,), where A, is the work to be 
performed on the first machine of the shop 
and B, is the work to be performed on the 
second machine. The tasks will be exe- 
cuted on the two machines in this order, 
although it is permissible for some of the 
A i  andB~ to be zero since some of the tasks 
will have only one operation performed 
upon them. It is assumed that  each ma- 
chine can work on only one task at a time, 
and that  operation A, must  be completed 
before operation B, can be initiated. Given 
n pairs of the form (A,, Bt), the problem is 
to order the n jobs so that  the maximum 
flow time (i.e., schedule or completion 
time) is minimized. Johnson showed that  
job J# should precede job Jj+~ if 

min(Aj,  B#+I) < min(Aj+l, B~). 

Consider an example that  was presented 
in [11, p. 89]. Table I defines the character- 
istics of the tasks to be scheduled. Table II 
shows that  T2 < T3 and T4 < Ts*, 4 since 
rain(A2, B3) = min(0, 4) = 0 < rain(A3, B2) 
= min(5, 2) = 2, and rain(A4, Bs) = min(8, 
1) = 1 < min(A5, B4) = rain(2, 6) = 2. 

TABLE I. CHARACTERISTICS OF A SET or TASmS VO 
BE SCHEDULED 

Task Number ,  z A~ B~ 

1 6 3 
2 0 2 
3 5 4 
4 8 6 
5 2 1 

TABLE II. MINIMUM FLOw TIMES FOR DIFFERENT 
PAIRINGS IN THE SET OF TASKS OF TABLE I 

j (At, Bj+I) M~n. (Aj+I, Bj) M~n. 

1 (A1, B2) = 2 (A2, B 1) = 
(6, 2) (0, 3) 0 

2 (A2, B3) ~ 0 (A3, B2) = 
(0, 4) (5, 2) 2 

3 (A3, B4) = 5 ~/~4, B3) 
(5, 6) (8, 4) 4 

4 (A4, Bs) = 1 (As, B4) = 
(8, 1) (2, 6) 2 

Notice that use of the symbol < here means that T~ 
should precede Tj in the optimal sequence. It does 
not mean that T~ must precede Tj in all orderings, 
since it is given that the tasks are independent and 
simultaneously available. 
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Further examination of Table II shows 
t h a t  T2 ~: T4 and T 2 <~ T5. Furthermore, T4 
<~ T3 a n d  T3 "~ T5. Summarizing t hese  
results, we find that the ordering should 
be T2, T4, T3, T5. The only task not yet 
scheduled is T~. From Table II and John- 
son's result, T~ ~ T2, T1 <~ T3, T1 ~ T4, 
a n d  TI  <~ T5. T h u s  the  only position for T~ 
that satisfies these procedence relations 
and the ordering of T2, T4, T3, T5 is one in 
w h i c h  T3 <~ T~ and T 1 "~ T5, and the final 
ordering is T2, T4, T3, T1, Ts. The  schedule  
that results from this ordering is shown in 
Figure 7a; it yields a minimum flow time 
of 23. An SPT schedule on the basis of the 
A~ is shown in Fig. 7b, and a schedule 
based on the order in which the tasks ap- 
pears in the initial table is given in Fig. 7c. 

Conway, Maxwell, and Miller indicate 
that, aside from mathematical program- 
ming solutions, no efficient algorithm sim- 
ilar to Johnson's exists for the minimiza- 
tion of the mean flow time for the two- 
machine flow-shop problem (i.e., the prob- 
lem is NP-hard). Branch-and-bound tech- 
niques have been used to minimize F, and 
the results of these efforts have shown that 
the amount of computation doubles every 
time a job is added to a set of jobs to be 
sequenced. The authors note that this 2 n 
rate of increase is still better than the n! 
rate of computation that would be required 
for exhaustive enumeration. Mathemati- 
cal programming techniques have been 
used with varying degrees of success in an 

- '-  I T4 ] T, I T1 I T5 V/ . 'J 
T T T T 

0 2 4 6 8 10 , 2  , 4  16 18 20 22 24 

(a) 

A ~s ~3 l T, I T~ ~'//////A 

(b) 

^ 

B 

'0 '2 , o ' ,o,2 ;, ;6 ;2 
(c) 

Fmum~ 7 Illustratmn of Johnson's algorithm for 
the tasks of Table I. (a) Optimal sequence: Fm~x = 
23; (b) SPT sequencing on A,: Fmax = 27; (c) Se- 
quencing in the order (T,, T2, T3, T~, Ts): Fm~x = 
26. 

attempt to minimize the maximum flow 
time for the three-machine flow-shop. 

The results of the preceding paragraphs 
have been extended for the situation in 
which more than one processor exists in 
each of two classes, Class A and Class B. 
In the ~'more-and-earlier" (ME) scheduling 
strategy, V. Y. Shen and Y. E. Chen [37] 
consider a system with m processors in 
Class A and n processors in Class B, with 
the objective of minimizing the maximum 
completion time. The authors show that 
although the ME strategy is not optimal, 
it is simple and works quite well. In devel- 
oping the ME strategy, a partial ordering 
is defined such that task Ti precedes task 
Tj if 

A, + B~ >- Aj + Bj and A~ <-- Aj 

where At and Bi, respectively, represent 
the requirements of Ti for a processor in 
Class A and a processor in Class B. 

In a subsequent related work, Buten 
and Shen [5] drop the restriction that task 
T, must precede task Tj i f  Ai + B, >- Aj + 
B~ andA, -< Aj. Instead they consider what 
they call a modified Johnson ordering 
(MJO). (The Johnson ordering (JO) is 
based on the results of Johnson's algo- 
rithm cited earlier.) In a flow-shop envi- 
ronment with m processors of type A and n 
processors of type B, Ti < T~ according to 
MJO, if 

mm (A,/m, Bj/n) < m m  (AJm, Bdn). 

The authors develop two theorems which 
describe upper and lower bounds for the 
behavior of the MJO approach. 

In flow-shop problems, it is assumed 
that when a job must wait for a machine 
because the machine is busy, sufficient 
storage is available to contain the par- 
tially completed products. In a computer 
system environment this may not be a 
valid assumption, since the intermediate 
storage may consist of buffers as a task 
progresses from main memory to the CPU 
to an I/O unit. Reddi and Ramamoorthy 
[33, 43, 44] have investigated flow-shop 
schedules which do not assume that the 
available intermediate storage is infinite. 
Such an environment is considered to have 
a finite amount of intermediate storage 
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(FSFIS), in contrast to an environment 
with infinite intermediate storage (FSIIS). 
As a first step toward the solution of the 
FSFIS problem, Red-di and Ramamoorthy 
generated a solution for an environment 
with no intermediate storage (FSNIS). 

The effect of intermediate storage can be 
seen by examining the job-set of Fig. 8a. In 
an FSIIS environment, total completion 
time is minimized by scheduling the jobs 
in the order (Jr, J3, J2), a s  shown in Fig. 
8b. Suppose, however, that no intermedi- 
ate storage is available. Then the ordering 
(Jl, J3, J2) yields a schedule requiring 52 
units, as shown in Fig. 8c. The optimal 
FSNIS schedule is for the ordering ( J ,  J2, 
J3) and requires 45 units, as illustrated in 
Fig. 8d. 

The problem environment defined here 
in effect relaxes several of the constraints 
utilized in the development of Johnson's 
algorithm. First, more than two machines 
are allowed, and second, the amount of 
intermediate storage available is assumed 
to be zero. As indicated earlier, Conway, 
Maxwell, and Miller have indicated that 
no efficient algorithms exist for the solu- 
tion of the flow-shop problem in environ- 
ments which relax the constraints as- 
sumed by Johnson. The FSNIS problem 
investigated by Reddi and Ramamoorthy 
is no exception. However, Gilmore and 
Conroy have developed a polynomial-time 
solution for this "no-wait" environment 
when the number of machines is limited to 
two [45]. 

In a related investigation, Reddi and 
Feustel [34] consider additional problems 
in a flow-shop environment. Basically, 
they consider the overhead required to 
generate an optimal schedule in a com- 
puter system environment in which the 
two machines are the CPU and I/O proces- 
sor. They conclude that, since the compu- 
tational overhead is nonzero, it is best in 
some circumstances to optimally schedule 
a subset of the total set of tasks and ran- 
domly schedule the remaining tasks. 

It should be pointed out here that some 
authors refer to "multiprocessor" sched- 
ules when considering flow-shop schedules 
because more than one processor is in- 
volved. In this paper the requirement that 

Job 
Processor z 2 3 

2 

3 
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(d) 
FIGURE 8. Comparison of schedules for environ- 

ments with infinite intermediate storage (FSIIS) 
and environments with no intermediate storage 
(FSNIS). (a) Processing times of jobs to be sched- 
uled; (b) Optimal schedule for FSIIS and the order 
(J,, J3, J2); (c) Optimal schedule for FSNIS and 
the order (J1, J3, J~); (d) Optimal schedule for 
FSNIS and the order (J1, J2, Ja)- 

a task must flow through one machine or 
processor and then through the other is 
used to distinguish flow-shop schedules 
from the multiprocessor schedules of the 
following sections. Most of the major re- 
sults contained in Section 4 have been rig- 
orously examined from a more formal, 
mathematical point of view by Coffman 
and Denning [9] and by Coffman [42, 49]. 

4. MULTIPROCESSOR SCHEDULES 

In this section we examine schedules in 
which more than one processor can be used 
to optimize measures of performance. This 
section is divided into two major parts. In 
the first par t -Common Scheduling Envi- 
ronments - the  parameters identified in 
most of the scheduling literature and dis- 
cussed earlier prevail unless stated other- 
wise. That is, we assume a number of iden- 
tical processors, a set of tasks with equal 
or unequal execution times, and a (possi- 
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bly empty) precedence order. Both pre- 
emptive and nonpreemptive disciplines 
are examined. In the second pa r t -Spec ia l  
Scheduling Env i ronments -  additional 
constraints are introduced. These con- 
straints include systems with a finite 
number of resources in each member of a 
set of resource classes, periodic jobs with 
specified initiation and completion times, 
and the presence of intermediate deadlines 
within a schedule. 

Common Scheduling Environments 

This portion of the survey is divided into 
sections according to the measure of per- 
formance that  is to be optimized. The first 
part  of the discussion takes up the minimi- 
zation of the maximum completion time 
and the minimization of the number of 
processors; the second part  of the discus- 
sion has as its objective the minimization 
of the mean flow time. 

Schedules to Minimize Maximum Completion 
Dme and Number of Processors 

Schedules considered here are discussed 
separately according to whether or not 
preemption is allowed. 

Preemptive schedules The most sig- 
nificant contributions in the area of pre- 
emptive schedules (PS) have been made by 
Muntz and Coffman [29, 30]. We first con- 
sider only their optimal result for the case 
where any graph with mutually commen- 
surable node weights is executed by ex- 
actly two processors [29]. (A set of nodes is 
said to be mutually commensurable if 
there exists a w such that  each node 
weight is an integer multiple of w.) In 
subsequent discussion we consider their 
optimal results for rooted trees with mu- 
tually commensurable node weights and 
any number of processors. 

Preemptive schedules can be contrasted 
with nonpreemptive or basic schedules 
(BS). In the latter type of schedule, a task 
that  is awarded a processor retains that  
processor until the task is complete. In a 
preemptive schedule, a processor may be 
preempted from an executing task if such 

an action results in an improved measure 
of performance. 

In obtaining their results, Muntz and 
Coffman rely on a result generated by 
McNaughton [28] which places a lower 
bound on the optimal PS for a set of n 
independent tasks with weights (task du- 
ration or execution times) of {wl, w2, • • ", 
wn}, and k processors. This optimal length 
is given as 

max  max  {w~', w, . 

In words: the optimal PS length cannot be 
less than the larger of the longest task or 
the sum of the execution times divided by 
the number of processors. 

For their optimal algorithm, Muntz and 
Coffman partition the set of nodes in a 
graph having nodes of unit  weight into a 
sequence of disjoint subsets such that  all 
nodes in a subset are independent. All 
nodes in the same subset or at  the same 
level are candidates for simultaneous exe- 
cution. In a graph of N levels, the terminal 
node occupies the first level exclusively. 
Those nodes which may be executed dur- 
ing the unit  time period preceding the exe- 
cution of the terminal node occupy the sec- 
ond level, etc., up until the initial or en- 
trance node in the graph which occupies 
the h nh level. (The assignment of levels in 
this manner corresponds to the methods of 
precedence partitions discussed by Rama- 
moorthy and Gonzalez in [31]. In particu- 
lar, the assignment procedure outlined 
above corresponds to the latest precedence 
partitions. That is, the assignment of 
nodes to levels is done in a manner which 
defers task initiation to the latest possible 
time without increasing the minimum 
completion time, assuming that  the num- 
ber of processors available is greater than 
or equal to the maximum number of tasks 
at any level.) For an arbitrary graph G, a 
precedence relation will exist between the 
subsets due to the precedence which exists 
between nodes in the original graph. A PS 
schedule can be constructed for G by first 
scheduling the highest-numbered subset, 
then the subset at the next-lower level, etc. 
(When a subset consists of only one node, a 
node from the next-lower subset is moved 
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up if  it does not violate precedence con- 
straints.) If each of the subsets is sched- 
uled optimally, a subse t  schedule  results. 
Muntz and Coffman show that,  for two 
processors and equally weighted nodes, an 
optimal subset schedule for G is an opti- 
mal PS schedule for G. 

This result is extended to the case of 
graphs having mutually commensurable 
node weights. In order to generate the op- 
timal result it is necessary to convert 
graph G into another graph Gw in which 
all nodes have equal weights. This is done 
by taking a node of weight wi and creating 
a sequence of n nodes such that  wt = nw ,  
as illustrated in Fig. 9 [29]. Note that  the 
integrity of the original graph must  be 
maintained, in that  edges into or out of a 
node in G must  enter or leave an entrance 
or exit node in the sequence representing 
the original node. The authors then show 
that  an optimal subset schedule for G ,  is 
an optimal PS for G with k = 2. 

In this approach, one must  note whether 
the number of tasks at any level is even or 
odd. If  it is even, then all tasks at that  
level can be executed in the minimum 
amount of time with no idle time for either 
of the two processors. If the number of 
tasks is not a multiple of two, then the last 
three tasks to be scheduled at that  level (or 
all the tasks to be scheduled if there were 
only three originally) can be executed in 
no less than 1½ units, since all tasks in Gw 

/ 

) 

) 

(a) (b) 

FIGURE 9. Compamson of a graph wi th  mutua l ly  
commensurable  node weights wi th  the  corre- 
sponding graph hav ing  nodes of equal  weight. (a) 
Graph G node weights  w~ = 7, w2 = 14, w3 = 101/2; 
(b) Graph G, ,  w = 31/2. 
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FIGURE 10. Minimum-time execution format for 
three unit tasks with two processors. 

(a) 

P1 T T 2 T T 6 T 4 T 9 T I I  
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(b) 

FmURE II. lllustratlon of subset sequence algo- 
mthm. (a) Graph G for a set of tasks, wlth all 
nodes having umt welght; (b) Optimal preemptwe 
schedule 

are of unit  duration. By using the form 
shown in Fig. 10, three tasks in a given 
level can be executed in minimum time 
without processor idle time. Since schedul- 
ing in this manner ensures that  no proces- 
sor is idle, the subset sequence can be seen 
to generate a minimal-length PS. An ex- 
ample of the optimal PS algorithm is 
shown in Fig. 11 [29]. For this example, 
the optimal subset sequence for G is {T~}, 
{T2, T3}, {Ts, T~, T7}, {T4, Ts}, {T9, T,o}, 
{T,,}. 

Muntz and Coffman have extended their 
optimal results to the case in which any 
number of processors are allowed when the 
computation graph is a rooted tree (i.e., a 
tree in which each node has at most one 
successor, with the exception of the root or 
terminal node which has no successors), 
and the node weights w, are mutual ly com- 
mensurable [30]. On the way the authors 
consider general schedules (GS) and the 
concept of processor sharing. 

Normally one thinks of k processors in a 
system as constituting k discrete units of 
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computation. A task may be assigned to a 
processor on a preemptive or nonpreemp- 
tive basis, and during the time that  a task 
is assigned to a processor the total capacity 
of the processor is dedicated to that  task. 
We may assume, however, that  the capac- 
ity of a processor can be assigned to tasks 
in fractional parts a which vary between 0 
and 1. Thus, for example, a task requiring 
t units of time when assigned a complete 
processor would require 2t units when as- 
signed one-half of a processor (i.e., a = ½). 
If the amount of processor capability is 
allowed to vary before the task is com- 
pleted, we may speak of general schedules 
made possible by the technique of proces- 
sor sharing. 

The first result related by Muntz and 
Coffman is that  for a given graph, a given 
number of processors, and a performance 
measure of minimum completion time, 
schedules generated by a GS discipline are 
equivalent to schedules generated by a PS 
discipline. This theorem implies that  proc- 
essor sharing is not necessary to generate 
an optimal schedule if preemption is per- 
mitted. 

The second major result uses the concept 
of levels and develops an algorithm which 
generates optimal preemptive schedules 
for tree-structured computations, an arbi- 
t rary number of processors k, and mu- 
tually commensurable node weights. 

The algorithm begins by assigning one 
processor (i.e., a = 1) to each of the k tasks 
farthest from the root of the tree. Two 
tasks T~ and T~ are equidistant from the 
terminal task (i.e., at the same level) if the 
sum of the weights of the tasks from T, to 
the terminal task (including T~) is the 
same as the sum of the weights of the tasks 
from T~ to the terminal task. If at any time 
the number of tasks n competing for proc- 
essors is greater than k, then each of the 
tasks at  the same level is assigned a frac- 
tional part  a of a processor such that  a = 
kin. Tasks are executed by their assigned 
processors with 0 < a - 1 until either 1) a 
task in the tree is completed; or, 2) if the 
current processor assignment is continued, 
some task(s) at  the same distance from the 
terminal node is (are) bypassed unless a 
reassignment is made. When either of 

these two events occurs, processors are 
reassigned according to the initial assign- 
ment procedure. A schedule formulated 
according to these rules is termed an M- 
schedule; it is illustrated in Fig. 12. The 
authors show that  the M-schedule gener- 
ated in this manner is an optimal sched- 
ule. Since the M-schedule is a GS, and 
since a PS is equivalent to a GS, it follows 
that  the algorithm yields an optimal pre- 
emptive schedule. The preemptive sched- 
ule of Fig. 12c is obtained by observing 
that  all tasks executed within each of the 
completion time intervals of Fig. 12b are 
independent. Thus within each interval 
the tasks can be scheduled optimally by 
using preemptive techniques [42]. This is 
done by assigning a task to a processor 
until the task is completed or the execu- 
tion interval is exceeded. In the first case a 
new task is initiated at the point of com- 
pletion; in the second case the task is allo- 
cated to the next processor in sequence. 

Coffman and Graham [10] informally re- 
fer to the algorithm described above as a 
generalized ~'critical-path" algorithm since 

(a) 

TI Tl,~ffi3]4 ~4 i T6 ~9 

- -  T2,o~ffi3/4 T 7 
T, 

T3,~ffi3/4 T 8 T7 

0 1 2 3 4 5 6 7 8 9 I0 II 12 1'3 

(b) 

P1 r I [ T2 T4 T6 i T~ 
I 

P2 T 2 T 3 T 5 T7 

(c) 

FIGURZ 12. I l lus t ra t ion  of Muntz  and Coffman al- 
gomthm wi th  k = 3. (a) Rooted tree wi th  mu tua l ly  
commensurab le  node weights .  Individual  node 
weights  are: wl = 71/2, w2 = 71/2, w3 = 71/2, w4 = 1, 
W5 = 8, We = 11/2, W7 = 2, Ws = 2, W 9 = 1/2; (b) M- 
schedule; (c) Opt imal  preempt ive  schedule. 
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tasks are given priority based on their dis- 
tance from terminal tasks. 

Lam and Sethi [42, 48] have adapted the 
level algorithms used by Muntz and Coff- 
man to study this type of algorithm on a 
system in which the processors are not 
identical. They show that the level algo- 
rithm produces the shortest preemptive 
schedules on two processors for arbitrary 
task systems. When the number of proces- 
sors is increased to three or more, the level 
algorithm does not produce an optimal 
schedule even if the precedence structure 
is a tree. Instead, the level algorithm is 
used to provide bounds on the execution 
time, for beth identical and nonidentical 
processors, when compared to the optimal 
schedule. These bounds-expressed in 
terms of m, the number of processors- are 
shown to be worse when the processors are 
of different speeds (1.~-~-m) than when the 
processors are alike (2-2/m). 

In their study, Liu and Yang [26] sched- 
ule independent tasks in a heterogeneous 
system in which the capacity of a processor 
is stated in terms of what they call a stan- 
dard processor. A processor is said to have 
speed b if it is b times as fast as a standard 
processor. Lin and Yang consider a multi- 
processor system which contains n~ proces- 
sors with speed b~, n2 processors with 
speed b2, • • ", and n~ processors with speed 
bk. For this configuration they develop an 
expression for the minimum completion 
time using an optimal preemptive schedul- 
ing algorithm. 

Nonpreemptive s c h e d u l e s - - I n  non- 
preemptive or basic schedules, a processor 
assigned to a task is dedicated to that task 
until it is completed. The initial investiga- 
tions discussed here develop optimal non- 
preemptive two-processor schedules for ar- 
bitrary task orderings in which all tasks 
are of unit duration. 

The key to the solution of this problem 
by Fujii, Kasami, and Ninomiya [14, 15] is 
the division of the total task set into com- 
patible and incompatible task pairs. A pair 
of tasks Tt and Tj is said to be compatible if 
T, ,~- Tj and T~ ,fl T,. For a set ofn tasks, let" 
m represent the maximum number of dis- 

joint compatible task pairs. Then n - m is 
a lower bound on the time necessary to 
execute all the tasks. The approach re- 
duces to finding the maximum number of 
compatible task pairs and then finding an 
optimal sequencing from the tasks in this 
set to the remaining tasks. 

In their study, Coffman and Graham 
[10] develop an algorithm for generating a 
job list and show that the schedule gener- 
ated by this list is at least as good as any 
schedule generated by any other list. A list 
schedule (or list, or task list) L for a graph 
G ofn tasks-denoted byL = (T1, T2, • • -, 
T . ) -  represents some permutation of the n 
tasks. A task is said to be ready if all of its 
predecessors have been completed; in us- 
ing a list to generate a schedule, an idle 
processor is assigned to the first ready task 
found in the list. It follows, therefore, that 
if a list is to be used to generate an optimal 
schedule the ordering of the tasks in the 
list is of primary importance. Thus the key 
to the Coffman and Graham approach is 
finding the list from which the optimal 
schedule can be produced. 

The algorithm used for generating the 
optimal list is a recursive procedure which 
begins by assigning subscripts in ascend- 
ing order to the task or tasks which is (are) 
executed last owing to precedence con- 
straints in the task graph. Notice that the 
set of successors .of these tasks is empty. 
Assignment proceeds ~up the graph" in a 
manner that considers as candidates for 
the assignment of the next subscript all 
tasks whose successors have already been 
assigned a subscript. Consideration of 
tasks in this manner amounts to examin- 
ing tasks in a given latest-precedence par- 
tition, although tasks are not executed at a 
time that corresponds to this partition. In 
effect, the tasks in a graph can be initially 
assigned subscripts in an arbitrary man- 
ner. The Coffman and Graham algorithm 
then reassigns subscripts in the manner 
outlined above, and the list is formed by 
listing the tasks in decreasing subscript 
order, beginning with the last subscript 
assigned. The optimal schedule is formed 
by assigning ready tasks in this list to idle 
processors. The algorithm is illustrated in 
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Fig. 13 by means of a task graph with 
reassigned subscripts, the resultant list 
L*, and the optimal schedule [10]. 

Through the use of counterexamples 
Coffman and Graham show that  their al- 
gorithm does not always yield optimal re- 
sults when the number of processors is 
increased to three or more, or when the 
number of processors is two and tasks are 
allowed to have arbitrary durations. This 
is true even when task durations are al- 
lowed to be one or two units. Fujii, et al., 
indicate that  in the two-processor case 
tasks of nonunit length can be split into a 
series of tasks of length one, and their 
algorithm yields a lower bound on the 
processing time of the original problem. 

As indicated by Sethi [42], Muraoka [46] 
developed an optimal algorithm for this 
environment "by first considering • • • task 
systems in which for all tasks T, the sum 
of the maximal path length from an initial 
node to T and the level of T is a constant. 
The algorithm is then extended to general 
task systems." 

Optimal results for nonpreemptive 
schedules have also been addressed by T. 

(a) 

P11 19 F1, ITl6  lol l lTloIT9 I 
d ' 2 '  ' 4' ' ~ ' s' ' l'o 

(b) 

FmURE 13. Illustration of Coffman and Graham 
algorithm. (a) Task graph wath reassigned sub- 
scripts L* = (T19, Tls, "", TO, (b) Optimal sched- 
ule. 

S. Hu [20] in what, next to Johnson's re- 
sults for two-machine flow-shop schedules 
([21]; see also Section 3 above), is probably 
the most frequently cited reference in mul- 
tiprocessor scheduling. Hu addressed two 
problems for tasks of unit  duration: 1) 
Given a fixed number of processors, deter- 
mine the minimum time required to proc- 
ess a task graph; and 2) Determine the 
number of processors required to process a 
graph in a given time. 

The first step in arriving at a solution to 
these problems involves the labeling of the 
nodes of an arbitrary graph. A node Nt is 
given the label ~ = X~ + 1, whereXi is the 
length of the longest path from N, to the 
final node in the graph. Labeling begins 
with the final node, which is given the 
label ~1 = 1. Nodes that  are one unit  re- 
moved from the final node are given the 
label 2, and so on. This labeling scheme 
makes it clear that  the minimum time 
Tm,~ required to process the graph is re- 
lated to OLmax, the node(s) with the highest 
numbered label, by 

Hu's optimal solutions to the questions 
posed earlier are limited to rooted trees. 
Using the labeling procedure described 
above, one can obtain an optimal schedule 
for m processors by processing a tree of 
unit-length tasks in the following manner: 

1) Schedule first the m (or fewer) nodes 
with the highest numbered label, 
i.e., the starting nodes. If  the number 
of starting nodes is greater than m, 
choose m nodes whose o~ is greater 
than or equal to the oq of those not 
chosen. In case of a tie the choice is 
arbitrary; 

2) Remove the m processed nodes from 
the graph. Let the term "starting 
node" now refer to a node with no 
predecessors; 

3) Repeat steps 1 and 2 for the remain- 
der of the graph. 

Schedules generated in this manner are 
optimal under the stated constraints. The 
labeling and scheduling procedures are 
quite simple to implement and are illus- 
trated in Fig. 14. 
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(a) 

I IT6 T3 
1' ; '3 '4 ; '6 ~ 8' 

(b) 

FIGURE 14 Illustration of Hu's optimal algorithm. 
(a) Rooted tree labeled according to Hu's proce- 
dure; (b) Optimal schedule for three processors. 

As indicated earlier, the minimum time 
required to process a graph labeled accord- 
ing to Hu's procedure is o~ax. Suppose one 
wishes to process a graph within a pre- 
scribed time t, where t - ama~ + C and C is 
a nonnegative integer. The minimum 
number of processors m required to process 
the graph in time t is given by 

rn - I < [I/(T* + C)] ~p(a~a~ + 1 - j )  < rn, 
Jffil 

where p (i) denotes the number of nodes in 
the graph with label o~, and T* is the value 
of the constant T which maximizes the 
given expression. To illustrate this result, 
consider Fig. 4.6. For C = 0, for exam- 
ple, value T* occurs when T = 1 or T = 2. 
This indicates that  in order to process the 
graph in minimum time four processors 
are needed. For C = 1, t = 8 and T* occurs 
when T = 2 or T = 5, and three processors 
are required. Varying C further we find 
that  three processors are required when 
the tasks must be processed within nine 
units, but only two processors are needed 
for a maximum processing time of 10 
units. 

The environment just described deals 
with a level algorithm as defined by Chen 
and Liu [7]. The algorithm developed by 
Coffman and Graham [10] is also a level 
algorithm. Given a set of tasks, a partial 
order, uni t  task times, and a nonpreemp- 
tive discipline, Chen and Liu define a level 
of a job as follows: 

1) The level of a task that  has no succes- 
sor is equal to 1. 

2) The level of a task that  has one or 
more successors is equal to one plus 
the maximal level value of the levels 
of the successors of the job. 

A simple level algorithm (SLA) is a level 
algorithm in which the scheduling of jobs 
within the same level is completely arbi- 
trary. If  ¢0SLA is the total execution time 
produced by a SLA, and O~o is the total 
execution time with an optimal schedule, 
Chen and Liu show that  for a two-proces- 
sor system 

¢DSLA/CD O ~ 4/3. 

For a three-processor system this ratio is 
expressed as 

OJSLA/~O -- 3/2. 

This notion of comparing the performance 
of an algorithm to a theoretical optimum is 
considered in depth in subsequent discus- 
sion. 

In contrast to the previously cited opti- 
mal results, most of the results described 
below are expressed in terms of bounds. 
That is, the schedule which results from a 
heuristic or approximate approach is ex- 
pressed as a ratio tha t  compares the subop- 
timal schedule to the optimal schedule. 
This ratio is greater than or equal to one, 
and provides an indication of how the per- 
formance of a simplified approach com- 
pares to an optimal solution. Two observa- 
tions should be made here. First, it often 
happens tha t  a heuristic schedule yields a 
solution which is as good as the optimal 
solution. Thus it is tempting to attribute 
undeserved merit  to an approach before its 
worst-case performance bounds are deter- 
mined. Second, when comparing a heuris- 
tic schedule to an optimal schedule, it 
should be remembered that  the latter is 
not necessarily determined since, with the 
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exception of the special cases already dis- 
cussed, nonenumerative solutions to deter- 
mine the optimal result are not available. 
That is, short of enumerating all possible 
solutions and then selecting the best one, 
the optimal solution cannot be found. For 
problems with a small number of possibili- 
ties, enumeration may not be especially 
difficult. However, when the possibilities 
are very large the exponentially increas- 
ing computational time required to enu- 
merate all possible solutions enhances the 
attractiveness of heuristic approaches. 

The results below are discussed in terms 
of list schedules. A list scheduler executes 
a task only if all of its predecessors have 
been completed and no task preceding it in 
the (priority) list is ready to run. 

Probably the most significant and the 
earliest contributions on generating 
bounds for suboptimal multiprocessor 
schedules have been made by R. L. Gra- 
ham [17-19]. It was in connection with the 
study of so-called multiprocessor anoma- 
lies that  the bounds discussed here were 
developed. These anomalies, cited in ear- 
lier investigations (see [18]), arise from 
the counterintuitive observation that  the 
existence of one of the following conditions 
can lead to an increase in execution time: 

1) Replace a given task l istL by another 
l i s tL '  leaving the set of task times t~, 
the precedence order 4 ,  and the num- 
ber of processors n unchanged; 

2) Relax some of the restrictions of the 
partial ordering; 

3) Decrease some of the execution times; 
4) Increase the number of processors. 
Graham has developed a general bound 

by executing a set of tasks twice. During 
the first execution the tasks are character- 
ized by the parameters tL, 4 ,  L, n, and oJ 
(the length of the schedule) and during the 
second execution by tL', < ' ,  L ' ,  n',  and co' 
such that t~' -< tL, every constraint of 4 '  is 
also in 4,  i.e., 4 '  is contained in 4 .  The 
result of this general bound is that  

¢o'/¢0 <-- 1 + [(n - ~/n']. 

Graham has shown that  this bound is the 
best possible, and for n = n' the ratio 2 - 
1/n can be achieved by the variation of any 
one of L, tL, or 4.  

The anomaly that  results when task ex- 
ecution times are reduced is referred to by 
Manacher [27] as a "Richard's anomaly" 
since anomalies of this type were appar- 
ently first discussed by Richards [35]. Re- 
sults of simulations reported by Manacher 
showed that approximately 80% of all test 
cases displayed Richard's anomaly. Man- 
acher developed an algorithm to provide 
"stability in a strong sense" such that the 
completion time of all tasks in a task list is 
not increased by reducing the execution 
time of any of the tasks. This is accom- 
plished by adding "a modest number" of 
precedence constraints to the original par- 
tial ordering. Manacher also considered 
the stability problem for the case in which 
multiple initial tasks have different start- 
ing times. 

In the preceding discussion it was as- 
sumed that  once a task list is created it 
remains fLxed or static until all tasks in 
the list are executed. A variation of this, 
the dynamically formed list [18], seeks to 
redefine the list every time that a proces- 
sor becomes free. When this occurs, the 
task that  heads the "longest chain of unex- 
ecuted tasks" (in the sense that  the sum of 
the task times in the chain is maximal) is 
executed first. Let ~OL be the finishing time 
for the set of tasks executed in this man- 
ner, and let ¢Oo be the minimum finishing 
time. Using the general bound cited ear- 
lier, we find OiL/¢00 --< 2 -- l/n, since the 
dynamically formed list amounts to re- 
placing L by L'.  Graham [18] has devel- 
oped a slightly better best-possible bound 
given by 

OJ'L/OJ O ~-~ 2 - -  [2 / (n  + 1)]. 

An alternative to this approach is to 
assign to a ready processor the task whose 
execution time plus the execution time of 
all of its successors is maximal. If  a set of 
tasks executed in this manner has a finish- 
ing time of ¢0M, then tOM/COO is also bounded 
by the preceding expression. 

A special case for the "dynamic longest 
chain" approach occurs when < is empty, 
i.e., when the tasks are independent. For 
this case, Graham produced a best possible 
bound given by 

¢OL/OJO --< 4 /3  -- l/3n. 
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As stated earlier, the primary reason for 
the development of these bounded expres- 
sions is to provide good suboptimal sched- 
ules while investing only a fraction of the 
computational effort required to generate 
an optimal result. Suppose that  upon ex- 
amination of a set of r tasks to be sched- 
uled it is determined that  the set is too 
large for an enumerative approach. Then 
the following alternative appears promis- 
ing (again for the case < = 0): optimally 
schedule the k longest tasks (k - 0), and 
schedule the remaining r - k tasks in an 
arbitrary manner.  The bound developed 
by Graham for this approach is given by: 

co(k) < l + 1 - 1 I n  

¢0o - 1 + [ k / n ] '  

where n is the number of processors being 
used. Two special cases exist for this re- 
sult. When k = 0, 

co(0)/eo --< 2 - 1In .  

This was the bound developed for the ini- 
tial general bound for n = n'. If k = 2n, 

¢o(2n)#eo < 4/3 - 1 / 3 n .  

Thus the two previous results were simple 
special cases of a more general result. 

In a later reference [19], Graham ad- 
dresses the reverse question: Given a fixed 
deadline, what is the minimum number of 
processors required? (Recall that  T. C. Hu 
[20] addressed this question for the special 
case of a rooted tree.) If it is assumed 
that  < specifies no relation (that is, tasks 
are independent), then the problem re- 
duces to the one-dimensional cutting-stock 
problem as well as a special case of the 
assembly-line balancing problem. In ef- 
fect, the problem can be viewed in the 
following manner.  Assume that  a set of 
objects are to be placed in a set of identical 
boxes. Assume that  the objects all have 
the same length and width (but not 
height) and these two dimensions exactly 
match the corresponding dimensions of the 
boxes. The problem then becomes one of 
minimizing the number of boxes to contain 
the objects. If we equate tasks to objects 
and boxes to processors, then the heuris- 
tics developed by Graham can be used to 
find upper bounds for the minimum num- 

ber of processors. An in-depth t rea tment  of 
this subject is given by Graham in [42]. 

Thus we see that, for the special case in 
which there is no precedence, the results 
from another discipline can be used to ob- 
tain good suboptimal results with signifi- 
cant decreases in computational require- 
ments. Heuristic approaches to the prob- 
lem discussed here and the flow-shop prob- 
lem discussed earlier are considered in 
[24]. 

Longest-path algorithms have also been 
investigated by Kaufman [23] for tree- 
structured graphs. The environment al- 
lows unequal task times but does not allow 
preemption. In a manner  similar to that  of 
Muntz and Coffman [30], tasks with 
weights greater than one are represented 
by a string of unit-weight tasks whose sum 
equals the weight of the original task. 
Representing the graph in this manner  
allows one to determine the optimal non- 
preemptive solution using Hu's algorithm, 
since the graph is a tree. Kaufman's long- 
est-path or G algorithm, however, does not 
allow a processor to be preempted from a 
task upon completion if that  task is a 
member of the string of tasks representing 
a non-unit-weight task. 

If COp represents the optimal preemptive 
schedule, COn represents the optimal non- 
preemptive schedule, and COG represents 
the schedule determined by the G algo- 
rithm, then the bounds obtained by Kauf- 
man are 

COp < car <-- COc ~ COp + k - [ k / n ] ,  

where k is the weight of the largest task in 
the original graph and n is the number of 
processors available to any of the algo- 
rithms. 

Adam, Chandy, and Dickson [1] have 
compared through extensive simulation 
the performance of several list schedules 
made in an unrestricted environment. The 
environment of Adam, et al., allows for 
general graph structures, two or more 
processors, unequal task durations, and no 
preemption of tasks. 5 The five heuristics 
studied are: 

1) HLFET (Highest Levels First with 

5 These heur is t ics  were  also compared in a nondeter-  
minis t ic  env i ronment .  
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Estimated Times). The term "level" 
as used here refers to the sum of the 
weights of all vertices in the longest 
path from a task to the terminal 
node. (Since we are not assuming in- 
dependent tasks, predecessor tasks 
must  be completed before a task can 
be initiated); 

2) HLFNET (Highest Levels First with 
No Estimated Times). In effect, all 
tasks are assumed to have equal task 
times; 

3) RANDOM. Tasks are assigned priori- 
ties randomly; 

4) SCFET (Smallest Colevels First with 
Estimated Times). A colevel of a task 
is measured in the same manner as 
its level, except that  the length of the 
path is computed from the entry node 
rather than from the terminal node. 
Priority is assigned according to co- 
level (i.e., the smaller the colevel, the 
higher the priority); 

5) SCFNET (Smallest Colevels First 
with No Estimated Times). SCFNET 
is the same as SCFET except that  all 
tasks are assumed to have equal du- 
ration. This amounts to an earliest 
precedence partition if execution 
times are ignored. 

Extensive simulations based on real and 
on randomly generated graphs show that  
the order of accuracy among the graphs is: 
HLFET, HLFNET, SCFNET, RANDOM, 
and SCFET. The near-optimal perform- 
ance of HLFET again confirms the useful- 
ness of longest-path schedules when the 
measure of performance is minimum com- 
pletion time. The level of performance 
achieved by Adam, et al. (within 4.4% of 
optimal) for longest-path scheduling is 
comparable to that  reported by Manacher 
in [27] (15%). The near-optimality of long- 
est-path or critical-path scheduling has 
also been confirmed by Kohler [47], who 
demonstrated that  the performance of this 
heuristic increases as the number of proc- 
essors increases. 

Recall that  in an earlier discussion the 
objective was to minimize mean flow time 
for a single processor. For a set of m proc- 
essors (m - 2) and a set of independent 
tasks, if all tasks are scheduled according 

to the shortest-processing-time (SPT) dis- 
cipline, then the resultant schedule is 
guaranteed to display a minimum mean 
finishing time [11]. The SPT discipline 
does not necessarily minimize the maxi- 
mum finishing time, however. (The prob- 
lem of minimizing the maximum finishing 
time of a set of independent tasks on two 
processors-and,  therefore, on more than 
one processor- i s  known to be NP-hard, 
i.e., not likely to be solvable by a nonenu- 
merative procedure.) Evidence that  two 
SPT schedules with the same mean finish- 
ing time do not yield the same finishing 
time is shown in Fig. 1 5 - w h e r e  SPT* 
denotes the minimum-finishing-time SPT 
schedule for the same three processors and 
set of tasks. Bruno, Coffman, and Sethi [3] 
have compared the finishing time charac- 
teristics of the optimal SPT schedule to 
those of the optimal schedule and devel- 
oped the following bound: 

OJsPr*/OJo~r <- 2 - lira. 

Coffman and Sethi [42, 50] have shown 
that  the longest SPT schedule is at  most 
50% longer than the SPT* one. If  the list of 
nondecreasing tasks is assigned in rota- 
tion to the m processors, this figure can be 
reduced to 33% if the longest m tasks are 
assigned largest-first on the m processors. 
Assigning all sets of m tasks largest-first 
drops the bound to at  most 25% worse. 

By forming longest-processing-time 
(LPT) schedules (which tend to maximize 

T A B L E  III. TASK PROCESSING TIMe.S FOR A SET OF 
TASKS 

T P, 
1 1 
2 2 
3 4 
4 4 
5 5 
6 8 

P1 1 T4 

(a) (b) 
FIGURe. 15. Comparison of STP and STP* schedules 

for three  processors and the  tasks  l isted in Table 
III. (a) STP schedule; (b) STP* schedule. 
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P2 T5 T4 

0 2 4 6 8 0 2 4 6 8 

(a) (b) 
FIGURE 16. Comparison of LPT and  RPT schedules 

for three  processors and the  tasks l isted in Table 
III. (a) LPT schedule; (b) RPT schedule. 

mean finishing time but  minimize the 
maximum finishing time) 6 and then ar- 
ranging the tasks assigned to a processor 
in SPT fashion, the so-called RPT disci- 
pline produces schedules with good maxi- 
mum-finishing-time and near-optimal 
mean-finishing-time properties, as shown 
in Fig. 16 [3]. 

Ramamoorthy, Chandy, and Gonzalez 
[32] use the concept of precedence parti- 
tions to generate bounds on processing 
time and the number of processors for 
graph structures whose nodes require unit  
execution time. As indicated earlier, prec- 
edence partitions group tasks into subsets 
to indicate the earliest and latest times 
during which tasks can be started and still 
guarantee minimum execution time for 
the graph. This time is given by the num- 
ber of partitions and is a measure of the 
longest path in the graph. For a graph of l 
levels, the minimum execution time is 1 
units. In order to execute a graph in this 
minimum time, the absolute minimum 
number of processors required is given by 

max {[Lj N Ejl}, 1 - j  <- l, 

where L~ and E~ refer to t h e f  h latest and 
earliest precedence partitions, respec- 
tively, and Ixl represents the cardinality of 
the set x. Ramamoorthy, et al., refer to the 
tasks contained in Lj N Ej as essent ial  
tasks .  Those tasks contained in t h e f  h sub- 
set given byL~ N Ej must  be ini t ia tedj  - 1 
units after the start  of the initial task in 
the graph to guarantee minimum execu- 
tion time. In a manner similar to that  of T. 
C. Hu [20], the authors develop a lower 
bound for the minimum number of proces- 

6 Denning and  G. S. Graham [52] have  shown, how- 
ever, t ha t  i t  is posmble for an  LPT schedule to dis- 
Phlay the  worst-case f inishing t ime characteris t ics  of 

e bounds developed by R L. G r a h a m  [18] for an  
arb i t ra ry  schedule compared to the  optimal one. 

sors when the execution time is allowed to 
exceed l and for the minimum execution 
time when the number of processors is 
fixed. A rooted tree structure for the graph 
is not required. The L-partition is also 
used by the authors to develop lower and 
upper bounds for the minimum number of 
processors required to process a graph in 
the least possible time. 

Ramamoorthy, et al., developed algo- 
ri thms to determine the minimum number 
of processors required to process a graph in 
the smallest possible time and to deter- 
mine the minimum time to process a task- 
graph given k processors. The second of 
these algorithms is modified to allow for 
the scheduling of graphs with unequal 
task durations. A complication in this case 
is that  it is often desirable to keep a proces- 
sor idle even when there is something to 
do. Figure 17b, for example, is an optimal 
schedule for the graph of Fig. 17a and re- 
quires 15 units. If  Processor 2 is assigned 
to Task 6 upon completion of Task 3, how- 
ever, the time required is 17 units, as 
shown in Fig. 17c. 

The computational time required to ob- 
tain the optimal solution by means of 
these algorithms is considerable. This 

PI 
P2 

0 

~ 2  1 1 

X 

(a) 

2 4 6 8 I0 12 14 
(b) 

, , ~  . . . . . . . . . . .  , ,  , ,  
0 4 6 8 I0 12 1 16 

FIGURE 17. Illustration of the effects of dehber- 
ately idling a processor. (a) Task graph for a set of 
tasks; (b) Optimal schedule; (c) Schedule when 
processors are activated as soon as possible. 
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time was significantly reduced by means 
of two heuristics that  yielded the optimal 
result most of the time. In Heuristic A, no 
processor is deliberately idled, and tasks 
are chosen according to their position in 
the L partitions. In Heuristic B, essential 
tasks are chosen first. Of the two, Heuris- 
tic A was the faster; in all the cases tested 
the heuristics also yielded the optimal so- 
lution. 

The bounds discussed in the preceding 
paragraphs have been improved by Fer- 
nandez and Bussell [12] using the critical- 
path approach. For a given graph there 
exists a path called the critical path, from 
the entry node to the exit node, which 
defines a minimum execution time for the 
graph. (This concept does not require 
equal task times.) Given the critical path 
execution time top, there exists a "comple- 
tion interval" (based on earliest and latest 
start  times) for each task in the graph, 
during which that task must  be completed 
in order that  the completion time not ex- 
ceed tcp. 

In arriving at a lower bound on the 
number of processors, Fernandez and Bus- 
sell consider integer intervals between 0 
and tcp. Within each of these intervals, 
tasks are shifted to give minimum overlap 
within the interval. The average number 
of processors required within an interval 
represents the minimum number of proc- 
essors required for that  interval. If all such 
intervals are examined, the maximum av- 
erage value rounded up to the nearest  in- 
teger represents the minimum number of 
processors required to process the graph in 
minimum time. 

Similar concepts are used to determine 
the minimum execution time when the 
number of processors is fixed. During each 
interval a certain amount of processing 
must take place to ensure that  total execu- 
tion times does not exceed tcp. If the num- 
ber of processors used is less than a certain 
minimum, then each interval will contrib- 
ute an amount of time in excess of what  it 
would contribute if tep is to be satisfied. 
The maximum deficit contributed by all 
intervals represents the minimum amount 
of time over and above tcp to process the 
graph. 

In a later study, Bussell, Fernandez, 
and Levy [4] address the problem of de- 
signing algorithms for minimizing the 
number of processors required to execute a 
schedule in a given time and for minimiz- 
ing the execution time given a fixed num- 
ber of processors. Schedules that  result 
from these objectives are referred to as 
processor-optimal schedules and time-opti- 
mal schedules, respectively. An environ- 
ment consisting of a set of tasks, a partial 
ordering, unequal task times, and no 
preemption of active tasks is assumed. 

Reduced to the simplest terms, their al- 
gorithm consists of adding precedence con- 
ditions (i.e. additional arcs) to the original 
graph at those points in the graph where 
the number of candidate tasks exceeds the 
number of processors. The effect is to dis- 
tribute processor demands throughout the 
length of the graph, without adversely af- 
fecting the overall execution time. As is 
the case for the Ramamoorthy, Chandy, 
and Gonzalez algorithms cited earlier [32], 
the actual description and implementation 
of the algorithm and its component parts is 
considerably more difficult than the basic 
premise on which the algorithm is based 
would suggest. This is borne out in both 
cases by appreciable computational time 
on large computer systems. The alterna- 
t i v e -  enumera t ion- i s ,  of course, much 
less desirable. Ramamoorthy, et al. [32] 
provide suboptimal heuristic alternatives 
to the optimal solution, and Bussell, et al. 
[4] provide suboptimal alternatives which 
can be implemented interactively. Both of 
these efforts emphasize once again the dif- 
ficulty of obtaining optimal solutions in 
the general scheduling environment. 

Liu and Yang [26] have developed 
bounds for the minimum completion time 
of an arbitrary set of tasks when the tasks 
are not all independent and the processors 
are not necessarily identical. 

Comparison of Preemptwe and Non- 
preemptive Schedules The minimiza- 
tion of completion time for some special 
cases has been discussed by Coffman and 
Graham in the previously cited work con- 
cerning optimal nonpreemptive two-proc- 
essor schedules [10]. The pivotal point in 
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(a) (b) 

T21 T61 
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6' 

(c) (d) 
FIGURe. 18. Comparison of optimal preemptive and nonpreemptive schedules. (a) Task graph G; ,(b) Task 

graph G~ (W = 1); (c) Optimal nonpreemptive schedule corresponding to Graph G; (d) Optimal schedule 
corresponding to Graph G~. 

the comparison is the ability to transform 
a graph G with arbitrary mutual ly com- 
mensurable task weights into a Graph Gw 
having execution times ofw time units. As 
before, w is the largest task weight in G 
which evenly divides all the task weights 
in G. If  preemptions axe allowed only at  
times that  are multiples of w, then an 
optimal nonpreemptive schedule for Gw 
can be viewed as an optimal preemptive 
schedule for G. For example, Fig. 18 shows 
the performance improvement achieved by 
allowing preemption at the end of each 
unit  interval (i.e., w = 1) [10]. Allowing 
preemptions at the end of each unit  inter- 
val results in a performance improvement 
of 7/6. 

Coffman and Graham observe that  no 
benefit is achieved by allowing preemption 
more frequently than every w/2  units and 
show that,  for an arbitrary number of 
processors m (m - 1), the length con of a 
nonpreemptive schedule is related to the 
length cop of a preemptive schedule by: 

OJN/¢~ P ---~ 2 - -  ( l / m ) .  

Schedules to Mimmlze Mean Flow Time 

This section considers the generation of 
schedules when the objective is to mini- 
mize mean flow time for a set of independ- 
ent  tasks. Earlier it was indicated that  
this measure of performance can be mini- 
mized for a set of identical processors by 
scheduling the tasks according to the SPT 
discipline. In this section, however, the 
processors are allowed to be nonidentical 

or heterogeneous. The results related here 
provide evidence that  scheduling consider- 
ations are becoming more sophisticated. 
These considerations reflect the growing 
acceptance of multiple and distributed 
processor systems and the practicality of 
increasing system capacity or replacing 
failed or obsolete components by adding 
nonidentical replacements. 

In their study Bruno, Coffman, and 
Sethi [3] develop an efficient algorithm for 
scheduling independent tasks to reduce 
mean finishing time (i.e., mean flow 
time). Because the processors are not iden- 
tical, it is no longer valid to use a single 
value to represent a task's execution time. 
Instead it is necessary to consider task 
execution time on each of the processors. A 
convenient way to do this for m processors 
and n tasks is by means of an m times n 
matrix [vu] such that  the nonnegative inte- 
ger vo denotes the execution time of task Tj 
on processor P~. An example of this matrix 
for five tasks and three processors is: 

[r,] = 4 1 5 
2 3 2  

The corresponding optimal schedule is 
shown in Fig. 19. 

From the matrix [v~], the n m  × n matrix 
Q is formed, where 

F [Tu] -I 

Ln[~ ' . l  I 
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l ~ T3 ! f f / ' / / / / / / / / / /A  

i , i i i t 

0 1 2 3 4 5 

F m u ~  19. I l lus t ra t ion  of opt imal  schedule  us ing  
Bruno,  et al., a lgor i thm.  

poten t ia l  
co~ ffie:[en~s .ulahine 

1 8 2 2 5  2 0  3 

3 6 [ 2 5  3 
4 (25"} 3 2 

(a) 

A set of n elements in this matrix is 
called a feasible set if no two elements are 
in the same row. The cost of this set is the 
sum of the weights of the n elements. The 
objective, then, is to find a feasible set 
with the smallest possible cost. The au- 
thors formulate the problem as a transpor- 
tation problem and arrive at  a nonenumer- 
ative optimal solution. 

If a priority or urgency measure w is 
assigned to each task and the processors 
are assumed to be identical, then Bruno, 
et al., show that  the problem is NP-hard. 
For m processors and n tasks, however, 
Eastman, Even, and Isaacs [51] show that  
the following is a lower bound for the 
weighted mean flow-time Fw(m): 

Pw(m) -> [(m + n)/m(n + 1)]Rw(1), 

where Pw(1) is the weighted mean flow 
time with one processor. 

The optimal solution of Bruno, et al., is 
used by Clark [8] to generate simple heu- 
ristics which provide near-optimal mean° 
finishing-time schedules. Clark assumes n 
independent tasks on m nonidentical proc- 
essors and, like Bruno, et al., uses a ma- 
trix P to describe Po, the processing time of 
task i on processor j .  

In his first result Clark observes tha tPo  
can be expressed as "the product of a time 
associated with job i and an efficiency fac- 
tor associated with processor j ,  tha t  is, Pz 
= p~wj." In the resulting algorithm, a ma- 
trix of processing times and processor co- 
efficients is formed as shown in Fig. 20a 
[8]. Note that  the processing times are 
arranged so that  P l  ~ P2 - -  " ' "  ~ P5. 
Starting with the top row of the matrix, 
the smallest coefficient is circled. This 
means that  the job found in the first row of 
the matrix (Job 1 in this example) is as- 
signed to the processor corresponding to 
the circled coefficient (Processor 3 in this 
example). The second row of the matrix is 

1 1 2 , 3 h l  h2 tl3 

1 16 20 ~ 1 1 1 
2 ~ 15 6 1 1 2 
3 12 15 ( ~  2 1 2 

8 ~ 4  2 1 3 
5 2 2 5 ~ )  2 2 3 

(D) 

P2 T4 

0 2 ~ 6 8 10 12 14 

{c) 
FmuaE 20. Illustration of Clark's algorithm. (a) 

Matrix of processing times and job efficiencies, 
and selection of machines; {b) Alternate method of 
selecting machines; (c) Optimal schedule. 

formed by copying the uncircled coeffi- 
cients from the previous row and increas- 
ing the value of a circled coefficient by the 
corresponding w~. Repeating the above 
process n - 1 times (with arbitrary selec- 
tion in case of ties) results in a schedule 
with optimal mean finishing time. The op- 
timal schedule for this example and the 
calculation of the flow time are shown in 
Fig. 201o. In a variation of this approach, 
the entire matrix is filled initially with 
explicit processing times, and a matrix of 
coefficients is formed in a manner similar 
to that  outlined above. Let the coefficients 
in a particular row i be hi, h2, • ' ", hm such 
tha t  the coefficients in each row represent 
the possible sequence positions on the 
three processors, counting from the end of 
the schedule, for the corresponding job. 
Then the minimum h~ p~ is chosen, p~ is 
circled, and h~ is increased by one in the 
next row. (See Fig. 20c.) The value o f f  for 
this example is: 

F = w~2 + w2P4 + 3waPs + 2wap3 + lwaP~ 
= 2.6 + 2.5.4 + 3.1.1 + 2-1-6 + 1-1"8 
= 45. 

Since machine factors are not used, this 
latter approach has more general applica- 
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bility; however, it does not guarantee opti- 
mality. Because of its simplicity, Clark 
uses this approach throughout his subse- 
quent work and refers to it as the quick- 
and-dirty (QAD) algorithm. (A variation 
of this algorithm, QAD*, sorts jobs on each 
machine in SPT order since this guaran- 
tees tha t  flow time on each machine is 
minimized.) Clark then proves that  there 
exists a renumbering of the jobs (a permu- 
tation of the rows in the processing-time 
array) such that  QAD yields a schedule 
with minimal flow time (and, equiva- 
lently, mean flow time). 

Liu and Yang [26.] have developed an 
algorithm for minimizing mean flow time 
for a set of independent tasks and the spe- 
cial case consisting of one processor of 
speed b plus n standard processors. The 
authors also provide a bound which com- 
pares the performance with respect to 
mean flow time of a homogeneous system 
of n + 1 standard processors to that  of a 
nonhomogeneous system containing n 
standard processors plus one processor 
which is b times more powerful than a 
standard processor. 

Special Scheduling Environments 

In this section new constraints are added 
to the more common constraints assumed 
in the preceding section. These new con- 
straints are in the form of resource classes, 
periodic jobs with hard deadlines, and in- 
termediate deadlines. 

Systems with Limited Resources 

The results surveyed in this paper thus far 
have been concerned primarily with the 
allocation of processors. Computational re- 
quirements have been expressed in terms 
of processing time and precedence condi- 
tions. It has therefore been assumed tha t  a 
processor is the only resource that  a job or 
task requires. Recognition of the fact that  
a task may require resources other than a 
processor has recently led to investigations 
of "systems with limited resources" in 
which it is assumed that  requirements ex- 
ist for multiple resources tha t  are limited 

in number. The primary references in this 
area are by Garey and Graham [16, 42] 
and Yao [40]. 

The Garey and Graham model aug- 
ments a standard model-consis t ing of a 
set of r tasks of unequal duration related 
by a precedence order and executed on a 
nonpreemptive b a s i s - b y  a set of n identi- 
cal processors. In addition it is assumed 
that  a set R = {R ~, • • . ,  Rs} of resources is 
available. If  task T, requires resource R~, 
we assume that  the requirement exists 
throughout the execution of the task. The 
need of task T~ for resource R, is denoted 
by p~, where 0 - p~ -< 1. Let r, (t) denote 
the total amount of resource R, which is 
being used at time t. Then r, (t) = ~ po for 
all T~ being executed at  time t and r~ (t) <- 
1. The basic problem considered is to what 
extent the use of different list schedules for 
this model can affect the finishing time oJ. 

Suppose that  for two arbitrary lists L 
and L '  the augmented system of n proces- 
sors executes the set of r tasks with the 
resulting finishing times ¢o and ¢o' respec- 
tively. For this environment Garey and 
Graham provide the following results: 

1) Fo rR  = {R1} (i.e., when there is only 
one resource other than  processors in 
the system), ~0ko' -< n; 

2) For R = {R ~} and all tasks independ- 
ent, eo/e,' ~ 3 - l /n; 

3) For R = {R1, R2, "" ", R~}, all tasks 
independent, and n ~ r, eo/oJ' - s + 1. 

The net  effect of these results is to indi- 
cate tha t  addition of resource considera- 
tions to the standard model causes an in- 
crease in the worst-case behavior bounds. 

Yao [40] uses essentially the same model 
as Garey and Graham except that  all tasks 
require one uni t  of time to complete. Using 
this model, Yao provides bounds for a 
large number of cases, based on the num- 
ber of tasks, the number of processors, and 
the rules used to form list schedules. Like 
Garey and Graham, Yao observes that  his 
algorithms behave less well when resource 
constraints are eliminated. A related ob- 
servation is that  investing some effort in 
the preparation of a list can lead to better 
results. 

In a somewhat less abstract sense, Ka- 
fura and Shen [22] assume tha t  individual 
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tasks require a minimum amount of mem- 
ory in addition to a certain amount of proc- 
essing time. A system of m identical proc- 
essors and n independent tasks is assumed 
such that  each processor is associated with 
a private storage device of a given capac- 
ity. When a processor completes a task it 
examines the list of tasks and selects the 
first task whose memory requirement is 
less than  or equal to its own memory ca- 
pacity. Assuming a nonpreemptive envi- 
ronment in which no processor is allowed 
to remain idle if there is a task in the task 
list that  it could execute, the authors de- 
velop bounds and heuristic strategies for 
selecting tasks on the basis of time and 
memory requirements. 

I F1 El 
I ['--3 

(a) 

Pertodic Job Schedules 

Periodic jobs were considered earlier in 
this survey, in the section on single-proc- 
essor schedules. At that  time, in addition 
to limiting attention to a multipro- 
grammed uniprocessor environment, 
preemption of the periodic jobs in order to 
meet the deadline of a higher-priority job 
was permitted. Multiprocessor schedules 
for a set of independent periodic jobs on a 
nonpreemptive basis [38, 41] are consid- 
ered here. 

In this section we assume that  all tasks 
are simultaneously available. The objec- 
tive is to minimize the number of proces- 
sors required to execute a job set while 
guaranteeing that  the periodic iterations 
of the individual jobs begin and end ex- 
actly on time. 

If we let E~ represent the maximum exe- 
cution time of one iteration of job J,  and if 
we represent the execution frequency by f~, 
then J~ can be expressed by these two pa- 
rameters as Jt: (f~, E,), 1 -- i -- n, where n 
is the number of jobs to be scheduled. The 
repetition period is represented by 7',, the 

TABLE IV. JoB CHARACTERISTICS FOR A SET OF 
JOBS WITH BINARY FREQUENCY DISTRIBUTION 

Jobs Frequency Permd Executton ttme 

J1 1/4 4 1 
J2 1/8 8 2 
J3 1/16 16 11/2 
J4 1/32 32 5 
J5 1/64 64 3 

c 1 ~ I I 

El 

• 1 9 9  

[] 
! ~ i ) ! l ) 

(b) 

Figure 21. Scheduling of permdlc jobs with a bio 
nary frequency distribution (a) Timing diagram 
for the first two jobs of Table IV; (b) Reduction m 
processor requirements through the merging of 
jobs. 

inverse of ~. In the following discussion 
two classes of jobs are considered: 1) If the 
n jobs, J i  to J ,  are arranged such that  f, > 
f~+i, assume that  f~ = 2~+l-i .e. ,  all jobs 
have a frequency which is related to the 
frequency of the highest-frequency job by 
some power of two; 2) Jobs of any fre- 
quency are allowed. 

Periodic jobs with a binary frequency 
distribution A set of jobs satisfying the 
constraints of this section is shown in Ta- 
ble IV. Figure 21a shows J1 and J2 sched- 
uled on separate processors, and Fig. 21b 
shows a schedule that  reduces the number 
of processors from two to one. The prob- 
lem, of course, is to determine the mini- 
mum number of processors required for 
the entire set without having to consider 
all possible alternatives. 

Notice that  the merged form of two jobs 
shown in Fig. 21b creates a new periodic 
composite job with a period of 71 (equal to 
2T1) and an execution time of ~1 (equal to 
TI + E0. In addition two idle times are 
created: I1, the periodic idle time with 
duration 71 - ~1, and h31 the forced idle 
time of length I1 - E2. (The notation hi' 
indicates that  the forced idle time is 
formed when Jj is merged with J,.) In at- 
tempting to merge further jobs into the 
schedule it is not necessary to consider the 
placement of jobs in the interval repre- 
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sented by the forced idle time. Instead, for 
this environment a schedule requiring the 
minimum number of processors is gener- 
ated by the following algorithm: 

1) L e t  J l * ,  J 2 * ,  "" • represent the subset 
of jobs assigned to processor P1, P2, 
• • .. Initially Jl* -- J2* . . . . .  ~b and 
I1 = 12 . . . . .  c¢. Whenever a job J~ 
is assigned to an empty Jz*, I~ = T~ - 

2) To assign J,, find the least l such that 
E i  -< It, and assign J, to Jl*. 

The optimal schedule for the set of jobs 
shown in Table IV is shown in Fig. 22. 
This result has been extended to the case 
where ]~ = k(f,+l) and k is a positive inte- 
ger greater than 1. 

Periodic jobs  wi th  an unconstrained fre- 
quency distribution In this section the 
frequency relationship between jobs as- 
sumed in the previous section is elimi- 
nated. As might be expected, the problem 
is now much more difficult, and no optimal 
solution has been found. Instead, heuristic 
approaches were developed and compared 
to each other through extensive simula- 
tion. These heuristics fall into three 
groups: 

1) Frequency Decreasing Order. Jobs 
are arranged in frequency-decreasing 
order and are to be assigned in this 
order. 

2) Load Factor Decreasing Order. The 
job load factor of J,, denoted by Li, is 
defined as follows: L~ = Ei/Ti. 

3) Preserving Minimum Length of the 
Critical Interval. The critical inter- 
val between two jobs is defined as the 
minimum interval between the com- 
pletion time of the first job and the 
initiation time of the second job at 
some point in the schedule. (The de- 
termination of this interval does not 
include the first iteration of the two 
jobs, where by definition the initia- 

J 
J i , , a , 

8 12 16 20 24 28 

Fmumz 22. 

tion of the second job immediately 
follows the completion of the first 
job.) 

In testing these heuristics, job sets were 
classified into two types. In Type I job 
frequencies are multiples of more than two 
base frequencies, and in Type II job fre- 
quencies are multiples of two or fewer base 
frequencies. As might be expected, out- 
standingly better performance of one algo- 
rithm over the others in all cases was not 
found. In general, however, Heuristic 2 
performed exceptionally well for Type I 
problems. Heuristic 3 performed best for 
certain Type H problem sets, and both 
Heuristics 1 and 2 performed well on job 
sets in which Heuristic 3 performed poorly. 
Not surprisingly, the number of processors 
required for Type II problem sets was con- 
siderably smaller than the number re- 
quired for Type I sets. 

Some very interesting anomalies were 
discovered as well. In many cases it was 
found that decreasing the job frequencies 
or the job execution times can result in an 
increase in the number of processors re- 
quired. Conversely, processor require- 
ments can be reduced by increasing the job 
frequencies or execution times, i.e., by in- 
creasing processor load. 

Deadline-Driven Schedules 

We have already noted the use of the term 
"deadline-driven scheduling" for an envi- 
ronment consisting of a single processor 
and a set of periodic tasks of known fre- 
quency and period. In this case we con- 
sider a rnultiprocessor environment in 
which tasks of unequal execution times 
are related by a given precedence struc- 
ture and are to be executed in a non- 
preemptive manner. 

In particular, Manacher [27] considers 
the case in which terminal and nonter- 
minal tasks require different completion 

[ Z :1  
i a i i ~ i I 

3 2  3 6  4 0  4 4  4 8  5 2  5 6  

Optimal schedule for the jobs of Table IV. 
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A graph with multiple deadlines. 

times. An example of a graph model satis- 
fying these requirements is shown in Fig. 
23. In this figure a pair of numbers of the 
form A]B next to a node represents a task 
whose execution time is A units and which 
must be completed B units after the start  
of execution. 

Manacher's heuristic solution to this 
problem is a variation of the longest-path 
schedules considered earlier. In this case, 
however, multiple longest paths or critical 
paths can be defined for the tasks con- 
rained in paths that  contain tasks with 
deadlines. Manacher's procedure is, in ef- 
fect, a variation of the latest-precedence 
partition for unequal task times and mul- 
tiple deadlines. 

In early work on scheduling with dead- 
lines, McNaughton [28] dealt with the case 
in which there is a deadline associated 
with each task and a loss for failure to 
meet the deadline. In the case of an abso- 
lute deadline, a task has no value at all if 
it is not completed by the deadline. In a 
relative-deadline situation, the loss is zero 
up to a certain point, and a monotonic 
increasing function of the time of comple- 
tion beyond that  point. His principal result  
with respect to multiple processors as- 
sumes that  a set of independent tasks all 
have a deadline at time zero, i.e., that  all 
tasks are simultaneously available and 
have equal priority. For this case, Mc- 
Naughton shows that  no preemptions are 
necessary in order to minimize the loss 
function. 

CONCLUSION 

This discussion has attempted to survey 
some of the more prominent results in the 
scheduling of deterministic job sets. It was 

assumed that task graphs are acyclic with 
no branching and that  task  execution 
times are exactly known. It should be re- 
membered, though, that  in many com- 
puter-system environments these assump- 
tions are not valid. Baer [2] discusses some 
of the implications of cycles and branches 
in graphs in addition to discussing some of 
the results considered here. Chandy [1, 6] 
among others considers schedules in which 
task execution times are not exactly 
known. A sizeable portion of Conway, 
Maxwell, and Miller's book [11] is devoted 
to what  they call the general n-job m-ma- 
chine job-shop problem, and indicates the 
complexity of this problem. 

This survey has shown that  efficient op- 
timal algorithms exist in only a few special 
cases and suggests that  perhaps future ef- 
forts should concentrate on the study of 
heuristics. The original objective of identi- 
fying deterministic schedules for use in 
practical computer-scheduling environ- 
ments is likely to remain unfulfilled. Al- 
though these results may be of interest in 
operations research where the assump- 
tions of deterministic schedules often ap- 
ply, the only approach to practical job- 
scheduling problems may lie with either 
well-tested heuristics or statistical meth- 
ods (the latter representing a new ap- 
proach to the problem). 

ACKNOWLEDGMENTS 

The author would like to thank the referees for their  
many valuable suggestions regarding the organiza- 
tion and contents of this paper. Many thanks also to 
Peter J. Denning for additional suggestions, includ- 
ing the use of the term NP-hard, toI.  H. Sudborough 
of the Computer Sciences Department at Northwest- 
ern University for his assistance in the preparation 
of the section on the efficiency of algorithms, and to 
Mark Kerstetter, Computer Sciences Department, 
Northwestern University, for the many contribu- 
tions made by him throughout this effort. 

CLASSIFICATION OF REFERENCES 

Table V provides a concise annotation to most of 
the references cited in this survey. References are 
categorized according to whether the study reported 
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shop environment. Task t imes can be equal (i.e., all 
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s t ra in ts  can be such t h a t  tasks are independent  (e), 
represen t  a t ree s t ruc tu re  (TREE), or  pe rmi t  a gen- 
eral  precedence re la t ionship  (GEN). F u r t h e r  cate- 
gorizat ion ]s based on whe the r  or not  t a sk  preemp-  
t ion is permi t ted  (PS and BS, respectively), w h e t h e r  
or not  sys tem resources  are  1,mited, w he t he r  or not  
deadhnes  m u s t  be observed, and w he t he r  or not  the  
processors  are identical. The measu re s  of perform- 
ance used to categorize the  references are the min-  
imization of the  m a x i m u m  finishing t ime (MAX F), 
the  min imiza t ion  of the m e a n  flow t ime (F), and the 
minimiza t ion  of  the  n u m b e r  of processors  (Np). The 
las t  two columns  indicate w he t he r  the  cited refer- 

ence discusses optimal or apprommate (in terms of 
bounds) solutions In general, the presence of an X 
in a column means tha t  the reference in the corre- 
sponding row bases its discussion on tha t  categonza- 
t,on feature. References tha t  are too general or tha t  
do not refer to specific scheduling results are omit- 
ted. 
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