
Deterministic Processor Scheduling*

MARIO J. GONZALEZ, JR.

Division of Mathematics, Computer Sciences and System Design,
The University of Texas at San Antonio, San Antonio, Texas 78285

This paper surveys the deterministic scheduling of jobs m uniprocessor, multiprocessor,
and job-shop environments. The survey begins with a brief introduction to the
representation of task or job sets, followed by a discussion of classification categories.
These categories include number of processors, task interruptlbility, job periodicity,
deadlines, and number of resources. Results are given for single-processor schedules in
job-shop and multIprogramming environments, flow-shop schedules, and multiprocessor
schedules. They are stated in terms of optimal constructive algorithms and suboptimal
heuristics. In most cases the latter are stated in terms of performance bounds related to
optimal results. Annotations for most of the references are provided in the form of a table
classifying the referenced studies m terms of various parameters.

Keywords and Phrases: Deterministic scheduling, optimal schedules, multiprocessors,
job-shop, flow-shop, graph structures, deadlines, resources, preemption, periodic jobs.

CR Categories: 4.32, 4.35, 6.20

INTRODUCTION
Although processor scheduling has been
studied for more than ten years, most of
the effort in this area has taken place dur-
ing the last five years. Many of the proces-
sor scheduling techniques in use today
have been adapted from older, well-estab-
lished results developed in management
science and operations research studies.
These studies have been concerned with
the utilization of people, equipment, and
raw materials. If raw materials are
equated with computer programs, and if
people and equipment in their role of proc-
essors of these raw materials are equated
with processors in computer systems, then
the rationale for the adaptation of man-
agement science and operations research
techniques is apparent.

In this discussion terminology will be

* This work was performed while at the Computer
Sciences Department, Northwestern University,
Evanston, Illinois 60201.

based on computer system components,
and reference to the assembly-line coun-
terparts of these components will be made
only sparingly. However, it is emphasized
here that the scheduling contributions
made by non-computer-oriented investiga-
tors play a very prominent part in the
totality of results in the area of processor
scheduling. As evidence of this, many of
the results related here have been dis-
cussed by Conway, Maxwell, and Miller
[11] in their book on the theory of schedul:
ing. For the most part, this book is based
on the study of job-shop scheduling prob-
lems, i.e., those problems that use the ter-
minology of manufacturing: job, machine,
operation, routing, and processing time.
The recent book edited by E. G. Coffman,
Jr. [42] is oriented toward computer sys-
tems and is designed to present a complete
update of recent results in computer and
job-shop scheduling theory. Coffman's
book covers all of the subjects discussed in
this survey in a much more comprehensive

Copyright © 1977, Association for Computing Machinery, Inc. General permission to republish, but not for
profit, all or part of this material is granted provided that ACM's copyright notice is gqven and that reference
is made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Computing Surveys, Vol. 9, No. 3, September 1977

174 • M. J. Gonzalez, Jr.

CONTENTS

INTRODUCTION
1 GENERAL CONCEPTS

Background
Clasmficatmn of Categories

Number of Processors
Task Duratton
Precedence Graph Structure
Task Interrupttbdtty
Processor Idleness
Job Pertodtctty
Presence or Absence of Deadhnes
Resource-Ltmtted Schedules
Homogeneous vs Heterogeneous Processors

Measures of Performance
Effcleney of Algorithms

2 SINGLE-PROCESSOR SCHEDULES
Job-Shop Results
Multlprogrammlng wlth Hard Deadhnes

3 FLOW-SHOP SCHEDULES
4 IVIULTIPROCESSOR SCHEDULES
Common Scheduhng Envlronments

Schedules to Mtntmtze Maxtmum
Completton Ttme and Number of Processors

Schedules to Mmtmtze Mean Flow Ttme
Specml Scheduhng Environments

Systems wtth Ltmtted Resources
Permdtc Job Schedules
Deadhne.Dnven Schedules

CONCLUSION
ACKNOWLEDGMENTS
CLASSIFICATION OF REFERENCES
REFERENCES

v

manner; in addition, many results and
topics not addressed in this survey or else-
where are fully explored.

Throughout this survey the scheduling
problems to be examined are expressed in
terms of deterministw models. By this we
mean that all the information required to
express the characteristics of the problem
is known before a solution to the problem
(i.e., a schedule) is attempted. The objec-
tive of the resultant schedules is to opti-
mize one or more of the evaluation crite-
ria. The motivation for this objective is
that in many situations a poor schedule
can lead to an unacceptable response to
timing requirements or to an unacceptable
utilization of resources. This discussion
shows that it is often impossible or prohibi-
tively expensive to obtain the best possible
solution. In such situations heuristic solu-
tions must be used. Many of these approxi-
mate solutions are examined in this sur-
vey.

1. GENERAL CONCEPTS

Background

Processor scheduling implies that jobs or
tasks (i.e., code segments) are to be as-
signed to a particular processor for execu-
tion at a particular time. Because many
tasks or jobs (these two terms will be used
interchangeably) can be candidates for ex-
ecution, it is necessary to represent the
collection of jobs in a manner which con-
veniently represents the relationships
among the jobs. A directed graph orprece-
dence graph representation is probably the
most popular representation in the sched-
uling literature. (For other representa-
tions see [2]). Figure 1 shows one of several
possible equivalent representations for a
set of jobs or tasks. The nodes in these
graphs can represent independent opera-
tions or parts of a single program which
are related to each other in time.

By inspecting Fig. 1, several pertinent
observations can be made. First, the col-
lection of nodes represents a set of tasks T
= {T,..-, Tr}. The directed paths between
nodes imply that a partial ordering or
precedence relation < exists between the
tasks. Thus if Tt < Tj, task T, must be
completed before Tj can be initiated. 1 In
Fig. 1, for example, T1 < T2, T1 < T3, T4 <
TT, and T5 < TT. Associated with each node
is a second number which refers to the
time required by a hypothetical processor
to execute the code represented by the
node. We thus speak of a function re: T --*
(0, ~). The program graph can then be
represented by the triplet (T, re, <). If the
processors are identical, then any task can
be run on any processor provided that its
precedence requirements are satisfied.
Figure 1 contains no information regard-
ing the number of processors available for

i A number of ways of mdwating tha t "T~ precedes
T~" are given m the hterature. Inc luded among
these are T, < T~, T~ < T~, T, > Tj, and T, (Tj~ Most
authors are careful to mdmate the meaning of a
p_artlcular symbol. However, if T~ indeed precedes
%, then T~ must be executed earher than Tj. Thus
the symbol "<" to mdmate an earher or lesser time
would appear to be the most appropriate symbol,
and probably the most commonly used symbol. To
distinguish this symbol from the usual "less than"
symbol , a dot reside the symbol may be added to
mimmize possible confusion.

Computing Surveys, Vol. 9, No 3, September 1977

Deterministic Processor Scheduling • 175

3

4

FIGURE 1 Representation of a set of tasks.

the execution of the task-set T. The num-
ber of processors, of course, directly deter-
mines the amount of time required to exe-
cute the tasks in T although, as will be
discussed later, it is not necessarily true
that execution time is inversely propor-
tional to the number of processors. Among
the many classification criteria, however,
the number of processors represents the
single most important factor in developing
optimal or suboptimal schedules.

Further inspection of Fig. 1 leads to ad-
ditional observations. Notice that the
graph as shown is acyclic, i.e., there are no
loops or cycles in it. A cycle in the graph
would prevent the static scheduling of the
graph (i.e., a scheduling performed prior
to execution time) since the conditional
which controls the number of iterations
cannot be resolved until execution time.
Most published work on processor schedul-
ing either explicitly or implicitly ignores
the difficulties presented by loops through
the assumption that the entire loop can be
contained within a single node in the
graph.

Notice also that the graphs of Fig. 1.1
contain no conditional or decision nodes.
A decision node is a node whose execution-
time outcome can affect the flow of control
in a program (e.g., a data-dependent
branch). This assumption is common to
most of the literature on this subject. If the
outdegree of a node (the number of edges
emanating from a node) is n, n > 1, then
the n nodes which are immediate succes-
sors of the node cannot be initiated until
the computations represented by the node
are completed. Similarly, a node with an
indegree (the number of edges incident to

the node) greater than one must wait for
the completion of all its immediate prede-
cessors before it can be initiated. The
scheduling techniques addressed in this
paper will be based on the two conditions
cited above: the absence of loops and the
absence of decision nodes. (A great deal of
effort has been invested in the modeling of
computational sequences which do not rely
on these assumptions; for a detailed dis-
cussion of that subject refer to [2].)

A graph of the form shown in Fig. 1 is
referred to as a single-entry-node single-
exit-node connected graph, or SEC. In
many references, however, the graph un-
der investigation is of the form shown in
Fig. 2.

Classification Categories

The discussion which follows is based on
whether a program graph is to be proc-
essed by one processor or a system contain-
ing more than one processor. The decision
to categorize schedules in this manner is
not obvious, in view of the large number of
factors that can be used for classification.
The following discussion will identify
these factors and show how the present
system of classification evolved.

Number of Processors

Traditionally, sing]e-processor systems
have overwhelmingly dominated com-
puter system installations. However, the
search for higher computational band-
widths through the use of several proces-
sors has been in progress since before the
so-called single-instruction-stream single-
data-stream (SISD) organization reached
maturity.The realization of large-scale in-
tegration and a desire for more reliable
computation have given further impetus

FIGURE 2. A task set with multiple miha l tasks.

Computing Surveys, Vol.9, No. 3, September 1977

176 • M. J . Gonzalez, Jr.

to the utilization of multiprocessor organi-
zations. As this discussion will show, how-
ever, nonenumerative optimal schedules 2
have been generated for only a limited
number of cases.

Task Duration

In the previous section, we indicated that
the nodes of a program graph can repre-
sent tasks of equal or unequal duration. In
the case of equal task duration, all the
tasks can be said to have a duration or
execution time requirement of one unit.
(The term "unit" is used here to represent
the time required to execute a given num-
ber of instructions.)

In the treatment of tasks of unequal du-
ration, a common practice is to assume
that all tasks can be subdivided into inte-
ger multiples of the smallest of the origi-
nal tasks. In this discussion, however, we
consider as a separate category program
graphs for which the subdivision of tasks is
not allowed.

Precedence Graph Structure

The individual nodes within a graph can
be related to each other in a number of
different ways. For example, it is possible
for all tasks to be independent of each
other. In this situation we say that there is
no precedence or partial ordering between
tasks. In other situations it is necessary to
structure the graph of a program in such a
way that every node in the graph has at
most one predecessor or at most one suc-
cessor. Another possibility allows the exis-
tence of a general precedence structure for
which the previous restrictions do not ap-
ply. Each of these conditions is examined
in the following discussion.

Task Interrupttblfity

If the interruption (and subsequent re-
sumption) of a task before its completion is
permitted, we speak of apreemptive sched-
ule. If interruption before task completion

2 An enumerat ive schedule is one in which all possi-
ble solutions are obtained and the best one m se-
lected.

is not permitted, we speak of a nonpreemp-
tive or basic schedule. In general, preemp-
tive disciplines generate schedules that
are better than those generated by non-
preemptive disciplines. It is also true,
however, that a certain penalty exists for
preemptive schedules that does not exist in
the nonpreemptive case. This penalty lies
in the task-switching overhead, which
consists of system interrupt processing and
the additional memory required to pre-
serve the state of the interrupted task.
This overhead may be acceptable if it oc-
curs infrequently; in an environment in
which preemption occurs frequently, how-
ever, unacceptable performance degrada-
tion maxy result.

Processor Idleness

As subsequent discussion will show, a
given measure of performance can often be
improved by deliberately idling a proces-
sor. Determining when this should be
done, however, can lead to significant in-
creases in the complexity of a scheduling
algorithm. In a "greedy" processor envi-
ronment, no idle time is inserted into a
schedule, and a pending task is begun as
soon as a processor is available.

Job Periodicity

The overwhelming majority of investiga-
tions reported in the literature and exam-
ined here deal with only a single execution
of a set of jobs or tasks that is expected to
be repeated at irregular intervals over a
long period of time. The analysis required
to generate optimal or near-optimal sched-
ules can be significant, but it is justified by
the time saved during each of these many
executions. During this time the code that
represents these tasks is unmodified, al-
though modifications to the data processed
by the code are permitted and perhaps rep-
resent the rule rather than the exception.
However, the measure used to evaluate
the performance of the set is considered
only for a single execution of each element
of the set.

Recently, however, consideration has
been given to the use of one or more proc-
essors in a control environment. An envi-

Computing Surveys, VoL 9, No. 3, September 1977

Deterministic Processor Scheduling • 177

ronment of this type can be characterized
by a set of tasks each of which has a known
execution frequency and processing time.
The scheduling problem in this environ-
ment is especially difficult for two reasons:
time and frequency requirements can be
different for each task in the set of periodic
tasks, and in some cases little or no devia-
tion is permitted in the scheduled initia-
tion time (and consequently the comple-
tion time) of each iteration of each task.

Presence or Absence of Deadlines

A number of performance measures have
been developed to evaluate the behavior of
schedules. In most cases, only the behavior
of the entire schedule or the entire job-set
is considered. In other cases, however,
deadlines or scheduled completion times
are established for individual members of
the task-set. If there is some slack or spare
time associated with the completion of
time of individual tasks and this slack
time is bounded, we speak of a hard dead-
line or a hard real-time schedule. If the
slack time is based on a statistical distri-
bution of terminations we speak of a soft
deadline or a soft real-time schedule.
Schedules with deadlines appear most fre-
quently in connection with periodic job
schedules.

Resource-Limited Schedules

Most of the effort to date on processor
schedules has assumed the unlimited
availability of whatever additional re-
sources are necessary to support multiple
processors in execution. Although it is not
usually mentioned, the processors them-
selves have been implicitly assumed to be
members of a (not usually limited) re-
source class.

Recently, however, consideration has
been given to the generation of schedules
in which individual tasks explicitly indi-
cate requirements for elements of one or
more resource classes. Aside from the
processor itself, the resource class which
most readily comes to mind is memory.
Most references assume that sufficient
memory is available to contain the code
and the data required by each of the tasks

assigned to a particular processor. In sys-
tems in which a single main memory is
shared, this implies that the total memory
requirement of the set of tasks does not
exceed the size of the main memory. With
the emergence of distributed systems in
which a processor can access both a local
memory and a shared memory, resource
considerations become particularly signifi-
cant. Of course, memory is not the only
system resource which can be available in
limited amounts. The theory resulting
from resource-limited models can be ex-
panded to include a multiplicity of re-
sources.

Homogeneous versus Heterogeneous
Processors

Along with investigations in resource-lim-
ited schedules, consideration of nonidenti-
cal or heterogeneous multiprocessor sys-
tems represents the latest effort in what is
now considered a mature field of investiga-
tion. Considerations of processor nonho-
mogeneity will become particularly signifi-
cant as multiple-processor systems assume
a bigger share of the total data-processing
load. The ability to have different proces-
sors in a set of processors implies that
system upgrades can be accomplished us-
ing state-of-the-art components, i.e., that
a processor (failed or otherwise) can be
replaced, or a processor can be added to the
system, without having to restrict the re-
placement or addition to a replica of the
original equipment. This is particularly
significant if, as is usually the case,
cheaper, smaller, and more capable re-
placements for the original equipment are
available.

Measures of Performance

As suggested by the preceding discussion,
a number of measures have been devel-
oped to evaluate the effectiveness of proc-
essor schedules. The five measures most
often cited in the literature are listed be-
low in approximate order of popularity;
this survey will concentrate on the first
three (a number of other measures are
discussed in [11, Chapter 2]):

1) minimize finishing or completion
time;

Computing Surveys, Vol. 9, No. 3, September 1977

178 • M . J . Gonzalez, Jr.

2) minimize the number of processors
required;

3) minimize mean flow time;
4) maximize processor utilization;
5) minimize processor idle time.
In Fig. 3 we display schedules with tim-

ing diagrams known as Gantt charts. In
this schedule three processors are re-
quired. The tasks assigned to each proces-
sor and their order of execution and execu-
tion time requirements are represented by
the horizontal lines and task identifica-
tions adjacent to each processor. The com-
pletion or finishing time (denoted by o~ in
this survey) for the schedule illustrated is
7. The flow time of a task is equal to the
time at which its execution is completed.
The flow time of a schedule is defined as
the sum of the flow times of all tasks in the
schedule. For example, the flow times of
tasks T1 and T4 in Fig. 3 are 7 and 4,
respectively, while the flow time of the
schedule is 25.5. The mean flow time is
obtained by dividing the flow time by the
number of tasks in the schedule. The utili-
zation (or utilization factor) of P1, P2, and
P3 is 0.93, 1.00, and 0.86, respectively.
These utilization values are obtained by
dividing the time during which the proces-
sor was actively engaged in execution by
the total time during which it was availa-
ble for execution. The idle time of P1, P2,
andP3 is 0.5, 0.0, and 1.0, respectively.

The rationale behind the minimization
of finishing or completion time is that sys-
tem throughput can be maximized if the
total computation time of each set of tasks
is minimized. Throughput is defined as
the number of task sets processed per unit
of time (e.g., per hour) and is therefore
inversely proportional to the sum of the
computation times of individual task-sets.

Minimizing the number of processors re-
quired can be justified for at least two
reasons. The first and most obvious is cost.
The second and not so obvious reason is

PI TI T 2

P2 T 2 T I

T3 I T4 ', ! T5 P3
| ! ! !

0 1 2 3 4 5 6 7

FmURE 3. Task schedule in Gantt chart form.

this: if the number of processors required
to process a set of tasks in a given time is
less than the total number of processors
available, then the remaining processors
can be used as backup processors for in-
creased reliability and as background
processors for noncritical computations.

Minimizing the mean flow time is re-
lated to the extent to which tasks occupy
system resources other than processors,
memory in particular. The shorter the
time during which a set of tasks occupies
memory, the greater the amount of time
that is available for other tasks to occupy
that same memory. (The analogy in a job-
shop environment is the amount of ware-
house space occupied by raw materials
that are to be converted into finished prod-
ucts, i.e., the inventory [3].) Thus flow
time is an indirect measure of system
throughput.

Efficiency of Algorithms

A key issue in the study of processor sched-
uling is the amount of computation time
needed to locate a suitable schedule. For
our purposes we shall say that an efficient
algorithm is one which requires an
amount of time that is bounded in the
length of its input by some polynomial. An
~nefficient algorithm is one which essen-
tially requires an enumeration of all possi-
ble solutions before the best solution can
be selected. Solutions of this type can be
characterized by algorithms whose run-
ning times are exponential in the number
of jobs to be scheduled. For most of the
problems of interest in processor schedul-
ing, no efficient algorithm is known; in
fact, it is known that if an efficient algo-
ri thm for these problems could be con-
structed, then an efficient algorithm could
be constructed for a large family of seem-
ingly intractable problems [53, 54]. That
is, it is known that these problems are NP-
hard.

By saying that a problem is NP-hard we
mean that it is at least as difficult to com-
pute as the hardest problem in the family
NP, which is the family of problems capa-
ble of being solved by nondeterministic al-
gorithms in polynomial time. It includes

Computing Surveys, Vol 9, No 3, September 1977

Deterministic Processor Scheduling

such problems as whether or not a proposi-
tional formula is satisfiable, whether or
not a graph possesses a clique of a given
size, and a version of the well-known trav-
eling salesman problem. After years of ef-
fort, research has failed to find a (deter-
ministic) algorithm that solves any one of
these problems in polynomial time.

2. SINGLE-PROCESSOR SCHEDULES

In the single-processor schedules consid-
ered here, all candidate tasks are simulta-
neously available for execution, the exact
characteristics of each of the tasks are
known and remain constant throughout
the lifetime of the task, and a particular
performance measure is specified, e.g.,
minimization of the maximum completion
time. Thus schedules considered in this
section do not include the type of problem
addressed by multiprogrammed or time-
shared computer systems, since the exact
characteristics of the tasks processed by
these systems are not known in advance.
The results related here have their origins
in one of two environments: a job-shop or a
process-control environment. Tasks in
both environments are usually considered
to be independent; the results in the proc-
ess-control environment are for periodic
jobs only.

Job-Shop Results

An environment consisting of n simultane-
ously available jobs or tasks of known
characteristics and one machine (i.e., one
processor) 3 is considered by Conway, Max-
well, and Miller [11] as the simplest sched-
uling problem. In their text the authors
relate several important results for sched-
ules of this type.

1) In scheduling n independent tasks on
a single processor, it is not necessary to
consider schedules which involve either
preemption or inserted idle time. Thus a
regular measure of performance cannot be
improved by preempting (and subse-
quently resuming) an active task or by

3 In job-shop l i tera ture the term "machine" is usu-
ally used for a pmce of eqmpment t ha t performs a
par t icular operation. In keeping with the theme of
this survey, the term "processor" will be used here.

• 179

idling the processor at any time prior to
the completion of the n tasks. (A regular
measure is a value to be minimized that
can be expressed as a function of the task
completion times and that increases only if
at least one of the completion times in-
creases.)

2) The maximum flow time for this type
of schedule is simply the sum of the n
completion times and is the same for each
of the n! possible sequences.

3) The mean flow time of a schedule of
this type is minimized by sequencing the
jobs in order of nondecreasing processing
time. Scheduling in this manner is re-
ferred to as shortest.processing-time se-
quencing (SPT), and the authors refer to
this type of sequencing as the most impor-
tant concept in the entire subject of se-
quencing.

To illustrate the concept, consider the
scheduling on a single processor of the six
independent tasks shown in Fig. 4. This
figure also shows a Gantt chart represen-
tation of one of the 6! possible schedules for
this set of tasks. It will be seen that the
maximum flow time equals 25 units, the

0 4 6 8 10 12 14 16 18 20 22 24 26

(a)

0 10

T P i

I 6
2

5

F l

17
] 4 1 ~ i 18

, 20
, T 6 [25

l~ 1~ 2'0 2's
(b)

jT

4
5

I I T1 6

I I I T3 [3
, , p , ,
0 3 7 1F2 18 25

(c)

FmURE 4. Determinat ion of f low time. (a) Gantt
chart representation; (b) Al ternate representa-
tion; (e) Shortest-processing-time (ST}>) schedule.
Tabulat ions to the r ight of the figures give the
individual tasks ' ut i l izat ion factors for the Gan t t
char t representat ion and flow t imes for the other
two l l lustratmns.

F 1

1
3
?

12
18
25

Computing Surveys, Vol 9, No. 3, September 1977

180 • M. J. Gonzalez, Jr.

same as the maximum completion time. In
order to determine the mean flow time (F),
it is more convenient to represent the
schedule in the manner shown in Fig. 4b.
The total area of this graph, including the
labeled blocks and the area under the
blocks, represents the sum of the task flow
times. Ft, the flow time of the i th task in
the sequence, is defined as

I

Ft = ~PL~,
J f f i l

where PL~ represents the processing time
of the task occupying t he j ~h position in the
schedule. (In words, the flow time of a task
is simply its finishing or completion time.)
The mean flow time is defined as

For the example of Fig. 4b,/~ = 16. If the
tasks of this illustration are rearranged to
form an SPT schedule as shown in Fig. 4c,
then ~' = 11.

A related observation is that longest-
processing-time sequencing (LPT) maxi-
mizes whatever SPT minimizes. Schedul-
ing procedures which produce opposite se-
quences in an n-task, single-processor
problem are called antithetical.

In related discussions, Maxwell, Con-
way, and Miller also provide results for
situations in which 1) only average, ex-
pected, or estimated processing times are
given; 2) priorities are assigned to individ-
ual tasks; and 3) all tasks are not simulta-
neously available but instead arrive inter-
mittently.

Multiprogramming with Hard Deadlines

The subject matter of this section is the so-
called time-critical process in a process-
control environment. A time-critzcal proc-
ess is a periodic task of known frequency
and execution time. Each activation of a
task must be completed within the inter-
val defined by the frequency, and activa-
tion of a task can be considered to be sig-
nalled by the presence of an external inter-
rupt. A collection of these processes can
represent the totality of computations that
must be performed in order to satisfy the

control demands of a particular real-time
environment. (An example of this type of
environment is the monitoring and setting
of temperatures, pressures, and fuel con-
sumption rates in a refinery.) From the
point of view of the processing load, the big
difference between this and a conventional
multiprogramming system is that the ex-
act nature of the total set of required com-
putations is known beforehand. In addi-
tion, response within a set of fixed limits
must be guaranteed; it is not permissible
to say, as one can with the typical system,
that '<most responses will occur within x
seconds."

Two independent research efforts in this
area (Serlin [36] and Liu and Layland [25])
have yielded very similar results. The
starting point of the discussion is the time-
critical process (TCP) illustrated in Fig. 5
[36]. In this model, E represents the re-
quired execution time of one iteration of
the process. The time r, sometimes called
the frame time, is the repetition period,
i.e., the period between successive occur-
rences of the interrupt signal associated
with the process, and d is the deadline of
the computation. In practice, d usually
equals r. An overflow is said to occur when
the arrival of an interrupt signals the ini-
tiation of an iteration of a TCP before the
previous iteration of that same TCP has
terminated. The problem addressed here is
that of scheduling a number of TCPs on a
single processor in a manner which guar-
antees that no overflow will occur. A
schedule is said to be feasible if the tasks
are arranged so that an overflow never
occurs [25].

In this model it is assumed that all tasks
are independent, and the tasks perform no
I/O. Since some tasks will have a higher
execution frequency than others, it will
sometimes be necessary to interrupt and

FIGURE 5

i~terrupts ~I I
I I

I_ d _1 i

E -' J
Model of a time-critical process (TCP)

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling • 181

subsequently resume the execution of a
lower-frequency task (i.e., the lower-fre-
quency task is preemptible) in order to
guarantee the deadline of a higher-fre-
quency task. For example, Fig. 6 shows
two tasks T~(r~ = 2, E 1 = 1) and T2(T 2 =
0.5, E2 = 1), with T1 having the higher pri-
ority. Figure 6a shows a feasible assign-
ment, and Fig. 6b shows that E2 can be
increased to at most 2. If T2 is given the
higher priority, then neither E~ nor E2 can
be increased beyond 1, as shown in Fig. 6c.

According to Serlin an efficient CPU al-
location algorithm is one that awards suf-
ficient processor time to a TCP for it to
meet its deadline while minimizing forced
idle time. (Forced idle time is time during
which the CPU must be idle in order to
accommodate the occasional worst-case
condition.) Liu and Layland seek to find
the largest possible utilization factor while
guaranteeing that all tasks meet their
deadline. The utilization factor U (referred
to as the "load factor" by Serlin) for a set of
n TCPs is defined as

V -- ~ Et /Tt .
, = 1

Serlin [36] and Liu and Layland [25]
obtained the same optimal result for a
fLxed-priority scheme in which a task of
frequency f~ has a higher priority than a
task of frequency/~ iff~ > f~. Liu and Lay-
land refer to a fixed-priority scheme of this
type as a rate monotonic priority (RMP)
assignment, while Serlin calls it the intel-
ligent fixed priority (IFP) algorithm. Both
sets of authors have shown that for this
scheme the least upper bound to the utili-
zation factor is U = n(T/n - 1), where n is
the number of TCPs. This result means
that the permissible sum of the individual
load factors must be considerably less than
1 in order to guarantee that each TCP
meets its deadline. For large task-sets,
more than 30% of the CPU must remain
idle. This scheme is optimum in the sense
that no other fLxed-priority assignment
rule can schedule a task-set that cannot be
scheduled by the IFP or RMP algorithms.

The assignment rule discussed above is
a fLxed or static rule in that the relative
priority of the tasks is based on the task

0 ' 2 3 4 5 0 ~ v2 3 4 ;

,r---!, , ! ! ! !
(a) (b)

~2 [- - I

'0 '1 ~ '3 i ;
T, ! ! , ,

(c)
Fmua~ 6. Schedules for two time-critical proc-

esses. (a) A feasible assignment when TI has
higher priority than T~; (b) Another feasible as-
signment when T, has higher priority than T~; (c)
Only feasible assignment if T2 has higher priority
than T,

frequencies and does not change during
execution. Both of the studies discussed
here have developed dynamic algorithms
in which priorities are permitted to change
and which permit 100% processor utiliza-
tion. Liu and Layland's rule is called the
deadline-driven scheduling algorithm.
Serlin discusses a similar algorithm devel-
oped by M. S. Fineberg [13]. In both of
these algorithms, priorities are reeval-
uated every time that a task-initiating in-
terrupt arrives at the system. Highest
priority is given to the task whose deadline
is the nearest, and lowest priority is given
to the task whose deadline is the farthest
away from the current time. This applies
only to those tasks whose computation for
the current frame has not yet been com-
pleted. Coffman [42] refers to a relative
urgency algorithm in which priorities are
reevaluated at each instant of time.

Serlin also speaks of the minimal time
slicing (MTS) algorithm based on what he
calls scheduling intervals. A scheduling
interval is the time between the occur-
rence of an interrupt and the occurrence of
the first deadline beyond the interrupt.
During this interval each task with an
incomplete computation is given a CPU
burst whose duration is directly propor-
tional to the percentage of the overall utili-
zation factor contributed by the load factor
of the task. This approach guarantees that
all tasks will meet their deadlines, but its
success depends on a small context-switch-
ing time.

Liu and Layland discuss a mixed sched-

Computing Surveys, VoL 9, No. 3, September 1977

182 * M. J. Gonzalez, Jr.

uling algorithm which is a combination of
the fixed- and dynamic-priority algo-
rithms. For a set of n tasks, the k tasks
having the shortest periods are scheduled
according to the fixed-priority-rate mono-
tonic scheduling algorithm, and the re-
maining tasks are scheduled according to
the deadline-driven scheduling algorithm
when the processor is not occupied by the
first k tasks. According to the authors this
algorithm does not always achieve 100%
utilization but appears to provide most of
the benefits of the deadline-driven sched-
uling algorithm. At the same time it may
be more readily implementable, since the
static scheduling of the k tasks is compati-
ble with interrupt hardware that acts as a
fixed-priority scheduler.

3. FLOW-SHOP SCHEDULES

After considering single-processor sched-
ules, it would seem natural to consider
multiprocessor schedules. However, there
is a class of schedules - the so-called flow-
shop schedu les - in which more than one
processor is involved in the cooperative
execution of a set of tasks, and in which a
sequential relationship exists between the
processors. (This is not the case with mul-
tiprocessor schedules.) Thus, a task to be
executed must be processed first by one of
the processors and then by the other(s).
This ordering must be observed for all the
tasks to be executed, and there is no reo
quirement that the processors be identical.

The origin of this kind of schedule is
once again the job-shop environment, in
which a job must be sequenced through a
set of machines that perform unique oper-
ations. The analogous situation in a com-
puter environment is a task requiring a
series of CPU and I/O bursts. The ordering
of these bursts corresponds to a sequencing
through a set of machines in which the
number of different machines is small.

As indicated by Conway, Maxwell, and
Miller, probably the most frequently cited
paper in the field of scheduling is John-
son's solution to the two-machine flow-
shop problem [21]. Johnson's algorithm se-
quences n jobs, all simultaneously availa-
ble, in a two-machine flow-shop so as to
minimize the maximum flow time. Using

the Conway ~, Maxwell, and Miller termi-
nology and notation adopted from John-
son, we say that each task consists of a
pair (A,, B,), where A, is the work to be
performed on the first machine of the shop
and B, is the work to be performed on the
second machine. The tasks will be exe-
cuted on the two machines in this order,
although it is permissible for some of the
A i andB~ to be zero since some of the tasks
will have only one operation performed
upon them. It is assumed that each ma-
chine can work on only one task at a time,
and that operation A, must be completed
before operation B, can be initiated. Given
n pairs of the form (A,, Bt), the problem is
to order the n jobs so that the maximum
flow time (i.e., schedule or completion
time) is minimized. Johnson showed that
job J# should precede job Jj+~ if

min(Aj, B#+I) < min(Aj+l, B~).

Consider an example that was presented
in [11, p. 89]. Table I defines the character-
istics of the tasks to be scheduled. Table II
shows that T2 < T3 and T4 < Ts*, 4 since
rain(A2, B3) = min(0, 4) = 0 < rain(A3, B2)
= min(5, 2) = 2, and rain(A4, Bs) = min(8,
1) = 1 < min(A5, B4) = rain(2, 6) = 2.

TABLE I. CHARACTERISTICS OF A SET or TASmS VO
BE SCHEDULED

Task Number , z A~ B~

1 6 3
2 0 2
3 5 4
4 8 6
5 2 1

TABLE II. MINIMUM FLOw TIMES FOR DIFFERENT
PAIRINGS IN THE SET OF TASKS OF TABLE I

j (At, Bj+I) M~n. (Aj+I, Bj) M~n.

1 (A1, B2) = 2 (A2, B 1) =
(6, 2) (0, 3) 0

2 (A2, B3) ~ 0 (A3, B2) =
(0, 4) (5, 2) 2

3 (A3, B4) = 5 ~/~4, B3)
(5, 6) (8, 4) 4

4 (A4, Bs) = 1 (As, B4) =
(8, 1) (2, 6) 2

Notice that use of the symbol < here means that T~
should precede Tj in the optimal sequence. It does
not mean that T~ must precede Tj in all orderings,
since it is given that the tasks are independent and
simultaneously available.

Coraputmg Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling • 183

Further examination of Table II shows
t h a t T2 ~: T4 and T 2 <~ T5. Furthermore, T4
<~ T3 a n d T3 "~ T5. Summarizing t hese
results, we find that the ordering should
be T2, T4, T3, T5. The only task not yet
scheduled is T~. From Table II and John-
son's result, T~ ~ T2, T1 <~ T3, T1 ~ T4,
a n d TI <~ T5. T h u s the only position for T~
that satisfies these procedence relations
and the ordering of T2, T4, T3, T5 is one in
w h i c h T3 <~ T~ and T 1 "~ T5, and the final
ordering is T2, T4, T3, T1, Ts. The schedule
that results from this ordering is shown in
Figure 7a; it yields a minimum flow time
of 23. An SPT schedule on the basis of the
A~ is shown in Fig. 7b, and a schedule
based on the order in which the tasks ap-
pears in the initial table is given in Fig. 7c.

Conway, Maxwell, and Miller indicate
that, aside from mathematical program-
ming solutions, no efficient algorithm sim-
ilar to Johnson's exists for the minimiza-
tion of the mean flow time for the two-
machine flow-shop problem (i.e., the prob-
lem is NP-hard). Branch-and-bound tech-
niques have been used to minimize F, and
the results of these efforts have shown that
the amount of computation doubles every
time a job is added to a set of jobs to be
sequenced. The authors note that this 2 n
rate of increase is still better than the n!
rate of computation that would be required
for exhaustive enumeration. Mathemati-
cal programming techniques have been
used with varying degrees of success in an

- '- I T4] T, I T1 I T5 V/ . 'J
T T T T

0 2 4 6 8 10 , 2 , 4 16 18 20 22 24

(a)

A ~s ~3 l T, I T~ ~'//////A

(b)

^

B

'0 '2 , o ' ,o,2 ;, ;6 ;2
(c)

Fmum~ 7 Illustratmn of Johnson's algorithm for
the tasks of Table I. (a) Optimal sequence: Fm~x =
23; (b) SPT sequencing on A,: Fmax = 27; (c) Se-
quencing in the order (T,, T2, T3, T~, Ts): Fm~x =
26.

attempt to minimize the maximum flow
time for the three-machine flow-shop.

The results of the preceding paragraphs
have been extended for the situation in
which more than one processor exists in
each of two classes, Class A and Class B.
In the ~'more-and-earlier" (ME) scheduling
strategy, V. Y. Shen and Y. E. Chen [37]
consider a system with m processors in
Class A and n processors in Class B, with
the objective of minimizing the maximum
completion time. The authors show that
although the ME strategy is not optimal,
it is simple and works quite well. In devel-
oping the ME strategy, a partial ordering
is defined such that task Ti precedes task
Tj if

A, + B~ >- Aj + Bj and A~ <-- Aj

where At and Bi, respectively, represent
the requirements of Ti for a processor in
Class A and a processor in Class B.

In a subsequent related work, Buten
and Shen [5] drop the restriction that task
T, must precede task Tj i f Ai + B, >- Aj +
B~ andA, -< Aj. Instead they consider what
they call a modified Johnson ordering
(MJO). (The Johnson ordering (JO) is
based on the results of Johnson's algo-
rithm cited earlier.) In a flow-shop envi-
ronment with m processors of type A and n
processors of type B, Ti < T~ according to
MJO, if

mm (A,/m, Bj/n) < m m (AJm, Bdn).

The authors develop two theorems which
describe upper and lower bounds for the
behavior of the MJO approach.

In flow-shop problems, it is assumed
that when a job must wait for a machine
because the machine is busy, sufficient
storage is available to contain the par-
tially completed products. In a computer
system environment this may not be a
valid assumption, since the intermediate
storage may consist of buffers as a task
progresses from main memory to the CPU
to an I/O unit. Reddi and Ramamoorthy
[33, 43, 44] have investigated flow-shop
schedules which do not assume that the
available intermediate storage is infinite.
Such an environment is considered to have
a finite amount of intermediate storage

Computing Surveys, Vol. 9, No. 3, September 1977

. r

184 • M. J . Gonzalez, Jr .

(FSFIS), in contrast to an environment
with infinite intermediate storage (FSIIS).
As a first step toward the solution of the
FSFIS problem, Red-di and Ramamoorthy
generated a solution for an environment
with no intermediate storage (FSNIS).

The effect of intermediate storage can be
seen by examining the job-set of Fig. 8a. In
an FSIIS environment, total completion
time is minimized by scheduling the jobs
in the order (Jr, J3, J2), a s shown in Fig.
8b. Suppose, however, that no intermedi-
ate storage is available. Then the ordering
(Jl, J3, J2) yields a schedule requiring 52
units, as shown in Fig. 8c. The optimal
FSNIS schedule is for the ordering (J , J2,
J3) and requires 45 units, as illustrated in
Fig. 8d.

The problem environment defined here
in effect relaxes several of the constraints
utilized in the development of Johnson's
algorithm. First, more than two machines
are allowed, and second, the amount of
intermediate storage available is assumed
to be zero. As indicated earlier, Conway,
Maxwell, and Miller have indicated that
no efficient algorithms exist for the solu-
tion of the flow-shop problem in environ-
ments which relax the constraints as-
sumed by Johnson. The FSNIS problem
investigated by Reddi and Ramamoorthy
is no exception. However, Gilmore and
Conroy have developed a polynomial-time
solution for this "no-wait" environment
when the number of machines is limited to
two [45].

In a related investigation, Reddi and
Feustel [34] consider additional problems
in a flow-shop environment. Basically,
they consider the overhead required to
generate an optimal schedule in a com-
puter system environment in which the
two machines are the CPU and I/O proces-
sor. They conclude that, since the compu-
tational overhead is nonzero, it is best in
some circumstances to optimally schedule
a subset of the total set of tasks and ran-
domly schedule the remaining tasks.

It should be pointed out here that some
authors refer to "multiprocessor" sched-
ules when considering flow-shop schedules
because more than one processor is in-
volved. In this paper the requirement that

Job
Processor z 2 3

2

3

(a)

~i I Ji I'hl J2 r / / / / / A

~ g / / / / / / / /A ~ , ~3 r / / / / / / / / / / / / . d ~2 I
I + i i i + , , + , + i , , , i , + , i i J i

0 I 0 20 30 40

(b)

i I ~ i P ' / / / / / X 31 ~ 2 F / / / / / / J
P2 VA J~ 1~3 K///////////////////A J2 K//A
3 F / / / / / / / / / A ~ , t~ ~ ~ V / / / / / / / / / / / / / / / / / / / A ~ ~ I

+ + , g i i f , , I + i i i + , i i + i I i i i , i

0 10 20 30 40 50
(c)

P2~/A al V//.////////////~ J21 J3 VA
+3 V////////A ~ r//////////////~ ~ ~ I

+ + , , + i i + i , i , i , + i + i 1 1 i i i

0 I 0 20 30 40

(d)
FIGURE 8. Comparison of schedules for environ-

ments with infinite intermediate storage (FSIIS)
and environments with no intermediate storage
(FSNIS). (a) Processing times of jobs to be sched-
uled; (b) Optimal schedule for FSIIS and the order
(J,, J3, J2); (c) Optimal schedule for FSNIS and
the order (J1, J3, J~); (d) Optimal schedule for
FSNIS and the order (J1, J2, Ja)-

a task must flow through one machine or
processor and then through the other is
used to distinguish flow-shop schedules
from the multiprocessor schedules of the
following sections. Most of the major re-
sults contained in Section 4 have been rig-
orously examined from a more formal,
mathematical point of view by Coffman
and Denning [9] and by Coffman [42, 49].

4. MULTIPROCESSOR SCHEDULES

In this section we examine schedules in
which more than one processor can be used
to optimize measures of performance. This
section is divided into two major parts. In
the first par t -Common Scheduling Envi-
ronments - the parameters identified in
most of the scheduling literature and dis-
cussed earlier prevail unless stated other-
wise. That is, we assume a number of iden-
tical processors, a set of tasks with equal
or unequal execution times, and a (possi-

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling • 185

bly empty) precedence order. Both pre-
emptive and nonpreemptive disciplines
are examined. In the second pa r t -Spec ia l
Scheduling Env i ronments - additional
constraints are introduced. These con-
straints include systems with a finite
number of resources in each member of a
set of resource classes, periodic jobs with
specified initiation and completion times,
and the presence of intermediate deadlines
within a schedule.

Common Scheduling Environments

This portion of the survey is divided into
sections according to the measure of per-
formance that is to be optimized. The first
part of the discussion takes up the minimi-
zation of the maximum completion time
and the minimization of the number of
processors; the second part of the discus-
sion has as its objective the minimization
of the mean flow time.

Schedules to Minimize Maximum Completion
Dme and Number of Processors

Schedules considered here are discussed
separately according to whether or not
preemption is allowed.

Preemptive schedules The most sig-
nificant contributions in the area of pre-
emptive schedules (PS) have been made by
Muntz and Coffman [29, 30]. We first con-
sider only their optimal result for the case
where any graph with mutually commen-
surable node weights is executed by ex-
actly two processors [29]. (A set of nodes is
said to be mutually commensurable if
there exists a w such that each node
weight is an integer multiple of w.) In
subsequent discussion we consider their
optimal results for rooted trees with mu-
tually commensurable node weights and
any number of processors.

Preemptive schedules can be contrasted
with nonpreemptive or basic schedules
(BS). In the latter type of schedule, a task
that is awarded a processor retains that
processor until the task is complete. In a
preemptive schedule, a processor may be
preempted from an executing task if such

an action results in an improved measure
of performance.

In obtaining their results, Muntz and
Coffman rely on a result generated by
McNaughton [28] which places a lower
bound on the optimal PS for a set of n
independent tasks with weights (task du-
ration or execution times) of {wl, w2, • • ",
wn}, and k processors. This optimal length
is given as

max max {w~', w, .

In words: the optimal PS length cannot be
less than the larger of the longest task or
the sum of the execution times divided by
the number of processors.

For their optimal algorithm, Muntz and
Coffman partition the set of nodes in a
graph having nodes of unit weight into a
sequence of disjoint subsets such that all
nodes in a subset are independent. All
nodes in the same subset or at the same
level are candidates for simultaneous exe-
cution. In a graph of N levels, the terminal
node occupies the first level exclusively.
Those nodes which may be executed dur-
ing the unit time period preceding the exe-
cution of the terminal node occupy the sec-
ond level, etc., up until the initial or en-
trance node in the graph which occupies
the h nh level. (The assignment of levels in
this manner corresponds to the methods of
precedence partitions discussed by Rama-
moorthy and Gonzalez in [31]. In particu-
lar, the assignment procedure outlined
above corresponds to the latest precedence
partitions. That is, the assignment of
nodes to levels is done in a manner which
defers task initiation to the latest possible
time without increasing the minimum
completion time, assuming that the num-
ber of processors available is greater than
or equal to the maximum number of tasks
at any level.) For an arbitrary graph G, a
precedence relation will exist between the
subsets due to the precedence which exists
between nodes in the original graph. A PS
schedule can be constructed for G by first
scheduling the highest-numbered subset,
then the subset at the next-lower level, etc.
(When a subset consists of only one node, a
node from the next-lower subset is moved

Computing Surveys, Vol. 9, No. 3, September 1977

186 • M. J . Gonzalez, J r .

up if it does not violate precedence con-
straints.) If each of the subsets is sched-
uled optimally, a subse t schedule results.
Muntz and Coffman show that, for two
processors and equally weighted nodes, an
optimal subset schedule for G is an opti-
mal PS schedule for G.

This result is extended to the case of
graphs having mutually commensurable
node weights. In order to generate the op-
timal result it is necessary to convert
graph G into another graph Gw in which
all nodes have equal weights. This is done
by taking a node of weight wi and creating
a sequence of n nodes such that wt = nw ,
as illustrated in Fig. 9 [29]. Note that the
integrity of the original graph must be
maintained, in that edges into or out of a
node in G must enter or leave an entrance
or exit node in the sequence representing
the original node. The authors then show
that an optimal subset schedule for G , is
an optimal PS for G with k = 2.

In this approach, one must note whether
the number of tasks at any level is even or
odd. If it is even, then all tasks at that
level can be executed in the minimum
amount of time with no idle time for either
of the two processors. If the number of
tasks is not a multiple of two, then the last
three tasks to be scheduled at that level (or
all the tasks to be scheduled if there were
only three originally) can be executed in
no less than 1½ units, since all tasks in Gw

/

)

)

(a) (b)

FIGURE 9. Compamson of a graph wi th mutua l ly
commensurable node weights wi th the corre-
sponding graph hav ing nodes of equal weight. (a)
Graph G node weights w~ = 7, w2 = 14, w3 = 101/2;
(b) Graph G, , w = 31/2.

[° i --~
PI

P2

I • I 5 LI

FIGURE 10. Minimum-time execution format for
three unit tasks with two processors.

(a)

P1 T T 2 T T 6 T 4 T 9 T I I

0 I 2 3 4 5 6

(b)

FmURE II. lllustratlon of subset sequence algo-
mthm. (a) Graph G for a set of tasks, wlth all
nodes having umt welght; (b) Optimal preemptwe
schedule

are of unit duration. By using the form
shown in Fig. 10, three tasks in a given
level can be executed in minimum time
without processor idle time. Since schedul-
ing in this manner ensures that no proces-
sor is idle, the subset sequence can be seen
to generate a minimal-length PS. An ex-
ample of the optimal PS algorithm is
shown in Fig. 11 [29]. For this example,
the optimal subset sequence for G is {T~},
{T2, T3}, {Ts, T~, T7}, {T4, Ts}, {T9, T,o},
{T,,}.

Muntz and Coffman have extended their
optimal results to the case in which any
number of processors are allowed when the
computation graph is a rooted tree (i.e., a
tree in which each node has at most one
successor, with the exception of the root or
terminal node which has no successors),
and the node weights w, are mutual ly com-
mensurable [30]. On the way the authors
consider general schedules (GS) and the
concept of processor sharing.

Normally one thinks of k processors in a
system as constituting k discrete units of

Computing Surveys, VoL 9, No. 3, September 1977

Deterministic Processor Scheduling • 187

computation. A task may be assigned to a
processor on a preemptive or nonpreemp-
tive basis, and during the time that a task
is assigned to a processor the total capacity
of the processor is dedicated to that task.
We may assume, however, that the capac-
ity of a processor can be assigned to tasks
in fractional parts a which vary between 0
and 1. Thus, for example, a task requiring
t units of time when assigned a complete
processor would require 2t units when as-
signed one-half of a processor (i.e., a = ½).
If the amount of processor capability is
allowed to vary before the task is com-
pleted, we may speak of general schedules
made possible by the technique of proces-
sor sharing.

The first result related by Muntz and
Coffman is that for a given graph, a given
number of processors, and a performance
measure of minimum completion time,
schedules generated by a GS discipline are
equivalent to schedules generated by a PS
discipline. This theorem implies that proc-
essor sharing is not necessary to generate
an optimal schedule if preemption is per-
mitted.

The second major result uses the concept
of levels and develops an algorithm which
generates optimal preemptive schedules
for tree-structured computations, an arbi-
t rary number of processors k, and mu-
tually commensurable node weights.

The algorithm begins by assigning one
processor (i.e., a = 1) to each of the k tasks
farthest from the root of the tree. Two
tasks T~ and T~ are equidistant from the
terminal task (i.e., at the same level) if the
sum of the weights of the tasks from T, to
the terminal task (including T~) is the
same as the sum of the weights of the tasks
from T~ to the terminal task. If at any time
the number of tasks n competing for proc-
essors is greater than k, then each of the
tasks at the same level is assigned a frac-
tional part a of a processor such that a =
kin. Tasks are executed by their assigned
processors with 0 < a - 1 until either 1) a
task in the tree is completed; or, 2) if the
current processor assignment is continued,
some task(s) at the same distance from the
terminal node is (are) bypassed unless a
reassignment is made. When either of

these two events occurs, processors are
reassigned according to the initial assign-
ment procedure. A schedule formulated
according to these rules is termed an M-
schedule; it is illustrated in Fig. 12. The
authors show that the M-schedule gener-
ated in this manner is an optimal sched-
ule. Since the M-schedule is a GS, and
since a PS is equivalent to a GS, it follows
that the algorithm yields an optimal pre-
emptive schedule. The preemptive sched-
ule of Fig. 12c is obtained by observing
that all tasks executed within each of the
completion time intervals of Fig. 12b are
independent. Thus within each interval
the tasks can be scheduled optimally by
using preemptive techniques [42]. This is
done by assigning a task to a processor
until the task is completed or the execu-
tion interval is exceeded. In the first case a
new task is initiated at the point of com-
pletion; in the second case the task is allo-
cated to the next processor in sequence.

Coffman and Graham [10] informally re-
fer to the algorithm described above as a
generalized ~'critical-path" algorithm since

(a)

TI Tl,~ffi3]4 ~4 i T6 ~9

- - T2,o~ffi3/4 T 7
T,

T3,~ffi3/4 T 8 T7

0 1 2 3 4 5 6 7 8 9 I0 II 12 1'3

(b)

P1 r I [T2 T4 T6 i T~
I

P2 T 2 T 3 T 5 T7

(c)

FIGURZ 12. I l lus t ra t ion of Muntz and Coffman al-
gomthm wi th k = 3. (a) Rooted tree wi th mu tua l ly
commensurab le node weights . Individual node
weights are: wl = 71/2, w2 = 71/2, w3 = 71/2, w4 = 1,
W5 = 8, We = 11/2, W7 = 2, Ws = 2, W 9 = 1/2; (b) M-
schedule; (c) Opt imal preempt ive schedule.

Computing Surveys, Vol. 9, No. 3, September 1977

188 • M. J. Gonzalez, Jr.

tasks are given priority based on their dis-
tance from terminal tasks.

Lam and Sethi [42, 48] have adapted the
level algorithms used by Muntz and Coff-
man to study this type of algorithm on a
system in which the processors are not
identical. They show that the level algo-
rithm produces the shortest preemptive
schedules on two processors for arbitrary
task systems. When the number of proces-
sors is increased to three or more, the level
algorithm does not produce an optimal
schedule even if the precedence structure
is a tree. Instead, the level algorithm is
used to provide bounds on the execution
time, for beth identical and nonidentical
processors, when compared to the optimal
schedule. These bounds-expressed in
terms of m, the number of processors- are
shown to be worse when the processors are
of different speeds (1.~-~-m) than when the
processors are alike (2-2/m).

In their study, Liu and Yang [26] sched-
ule independent tasks in a heterogeneous
system in which the capacity of a processor
is stated in terms of what they call a stan-
dard processor. A processor is said to have
speed b if it is b times as fast as a standard
processor. Lin and Yang consider a multi-
processor system which contains n~ proces-
sors with speed b~, n2 processors with
speed b2, • • ", and n~ processors with speed
bk. For this configuration they develop an
expression for the minimum completion
time using an optimal preemptive schedul-
ing algorithm.

Nonpreemptive s c h e d u l e s - - I n non-
preemptive or basic schedules, a processor
assigned to a task is dedicated to that task
until it is completed. The initial investiga-
tions discussed here develop optimal non-
preemptive two-processor schedules for ar-
bitrary task orderings in which all tasks
are of unit duration.

The key to the solution of this problem
by Fujii, Kasami, and Ninomiya [14, 15] is
the division of the total task set into com-
patible and incompatible task pairs. A pair
of tasks Tt and Tj is said to be compatible if
T, ,~- Tj and T~ ,fl T,. For a set ofn tasks, let"
m represent the maximum number of dis-

joint compatible task pairs. Then n - m is
a lower bound on the time necessary to
execute all the tasks. The approach re-
duces to finding the maximum number of
compatible task pairs and then finding an
optimal sequencing from the tasks in this
set to the remaining tasks.

In their study, Coffman and Graham
[10] develop an algorithm for generating a
job list and show that the schedule gener-
ated by this list is at least as good as any
schedule generated by any other list. A list
schedule (or list, or task list) L for a graph
G ofn tasks-denoted byL = (T1, T2, • • -,
T .) - represents some permutation of the n
tasks. A task is said to be ready if all of its
predecessors have been completed; in us-
ing a list to generate a schedule, an idle
processor is assigned to the first ready task
found in the list. It follows, therefore, that
if a list is to be used to generate an optimal
schedule the ordering of the tasks in the
list is of primary importance. Thus the key
to the Coffman and Graham approach is
finding the list from which the optimal
schedule can be produced.

The algorithm used for generating the
optimal list is a recursive procedure which
begins by assigning subscripts in ascend-
ing order to the task or tasks which is (are)
executed last owing to precedence con-
straints in the task graph. Notice that the
set of successors .of these tasks is empty.
Assignment proceeds ~up the graph" in a
manner that considers as candidates for
the assignment of the next subscript all
tasks whose successors have already been
assigned a subscript. Consideration of
tasks in this manner amounts to examin-
ing tasks in a given latest-precedence par-
tition, although tasks are not executed at a
time that corresponds to this partition. In
effect, the tasks in a graph can be initially
assigned subscripts in an arbitrary man-
ner. The Coffman and Graham algorithm
then reassigns subscripts in the manner
outlined above, and the list is formed by
listing the tasks in decreasing subscript
order, beginning with the last subscript
assigned. The optimal schedule is formed
by assigning ready tasks in this list to idle
processors. The algorithm is illustrated in

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling • 189

Fig. 13 by means of a task graph with
reassigned subscripts, the resultant list
L*, and the optimal schedule [10].

Through the use of counterexamples
Coffman and Graham show that their al-
gorithm does not always yield optimal re-
sults when the number of processors is
increased to three or more, or when the
number of processors is two and tasks are
allowed to have arbitrary durations. This
is true even when task durations are al-
lowed to be one or two units. Fujii, et al.,
indicate that in the two-processor case
tasks of nonunit length can be split into a
series of tasks of length one, and their
algorithm yields a lower bound on the
processing time of the original problem.

As indicated by Sethi [42], Muraoka [46]
developed an optimal algorithm for this
environment "by first considering • • • task
systems in which for all tasks T, the sum
of the maximal path length from an initial
node to T and the level of T is a constant.
The algorithm is then extended to general
task systems."

Optimal results for nonpreemptive
schedules have also been addressed by T.

(a)

P11 19 F1, ITl6 lol l lTloIT9 I
d ' 2 ' ' 4' ' ~ ' s' ' l'o

(b)

FmURE 13. Illustration of Coffman and Graham
algorithm. (a) Task graph wath reassigned sub-
scripts L* = (T19, Tls, "", TO, (b) Optimal sched-
ule.

S. Hu [20] in what, next to Johnson's re-
sults for two-machine flow-shop schedules
([21]; see also Section 3 above), is probably
the most frequently cited reference in mul-
tiprocessor scheduling. Hu addressed two
problems for tasks of unit duration: 1)
Given a fixed number of processors, deter-
mine the minimum time required to proc-
ess a task graph; and 2) Determine the
number of processors required to process a
graph in a given time.

The first step in arriving at a solution to
these problems involves the labeling of the
nodes of an arbitrary graph. A node Nt is
given the label ~ = X~ + 1, whereXi is the
length of the longest path from N, to the
final node in the graph. Labeling begins
with the final node, which is given the
label ~1 = 1. Nodes that are one unit re-
moved from the final node are given the
label 2, and so on. This labeling scheme
makes it clear that the minimum time
Tm,~ required to process the graph is re-
lated to OLmax, the node(s) with the highest
numbered label, by

Hu's optimal solutions to the questions
posed earlier are limited to rooted trees.
Using the labeling procedure described
above, one can obtain an optimal schedule
for m processors by processing a tree of
unit-length tasks in the following manner:

1) Schedule first the m (or fewer) nodes
with the highest numbered label,
i.e., the starting nodes. If the number
of starting nodes is greater than m,
choose m nodes whose o~ is greater
than or equal to the oq of those not
chosen. In case of a tie the choice is
arbitrary;

2) Remove the m processed nodes from
the graph. Let the term "starting
node" now refer to a node with no
predecessors;

3) Repeat steps 1 and 2 for the remain-
der of the graph.

Schedules generated in this manner are
optimal under the stated constraints. The
labeling and scheduling procedures are
quite simple to implement and are illus-
trated in Fig. 14.

C o m p u t i n g S u r v e y s , Vol . 9, No . 3, S e p t e m b e r 1977

Label

7

6

5

4

3

2

1

M. J. Gonzalez, Jr. 190

(a)

I IT6 T3
1' ; '3 '4 ; '6 ~ 8'

(b)

FIGURE 14 Illustration of Hu's optimal algorithm.
(a) Rooted tree labeled according to Hu's proce-
dure; (b) Optimal schedule for three processors.

As indicated earlier, the minimum time
required to process a graph labeled accord-
ing to Hu's procedure is o~ax. Suppose one
wishes to process a graph within a pre-
scribed time t, where t - ama~ + C and C is
a nonnegative integer. The minimum
number of processors m required to process
the graph in time t is given by

rn - I < [I/(T* + C)] ~p(a~a~ + 1 - j) < rn,
Jffil

where p (i) denotes the number of nodes in
the graph with label o~, and T* is the value
of the constant T which maximizes the
given expression. To illustrate this result,
consider Fig. 4.6. For C = 0, for exam-
ple, value T* occurs when T = 1 or T = 2.
This indicates that in order to process the
graph in minimum time four processors
are needed. For C = 1, t = 8 and T* occurs
when T = 2 or T = 5, and three processors
are required. Varying C further we find
that three processors are required when
the tasks must be processed within nine
units, but only two processors are needed
for a maximum processing time of 10
units.

The environment just described deals
with a level algorithm as defined by Chen
and Liu [7]. The algorithm developed by
Coffman and Graham [10] is also a level
algorithm. Given a set of tasks, a partial
order, uni t task times, and a nonpreemp-
tive discipline, Chen and Liu define a level
of a job as follows:

1) The level of a task that has no succes-
sor is equal to 1.

2) The level of a task that has one or
more successors is equal to one plus
the maximal level value of the levels
of the successors of the job.

A simple level algorithm (SLA) is a level
algorithm in which the scheduling of jobs
within the same level is completely arbi-
trary. If ¢0SLA is the total execution time
produced by a SLA, and O~o is the total
execution time with an optimal schedule,
Chen and Liu show that for a two-proces-
sor system

¢DSLA/CD O ~ 4/3.

For a three-processor system this ratio is
expressed as

OJSLA/~O -- 3/2.

This notion of comparing the performance
of an algorithm to a theoretical optimum is
considered in depth in subsequent discus-
sion.

In contrast to the previously cited opti-
mal results, most of the results described
below are expressed in terms of bounds.
That is, the schedule which results from a
heuristic or approximate approach is ex-
pressed as a ratio tha t compares the subop-
timal schedule to the optimal schedule.
This ratio is greater than or equal to one,
and provides an indication of how the per-
formance of a simplified approach com-
pares to an optimal solution. Two observa-
tions should be made here. First, it often
happens tha t a heuristic schedule yields a
solution which is as good as the optimal
solution. Thus it is tempting to attribute
undeserved merit to an approach before its
worst-case performance bounds are deter-
mined. Second, when comparing a heuris-
tic schedule to an optimal schedule, it
should be remembered that the latter is
not necessarily determined since, with the

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling ° 191

exception of the special cases already dis-
cussed, nonenumerative solutions to deter-
mine the optimal result are not available.
That is, short of enumerating all possible
solutions and then selecting the best one,
the optimal solution cannot be found. For
problems with a small number of possibili-
ties, enumeration may not be especially
difficult. However, when the possibilities
are very large the exponentially increas-
ing computational time required to enu-
merate all possible solutions enhances the
attractiveness of heuristic approaches.

The results below are discussed in terms
of list schedules. A list scheduler executes
a task only if all of its predecessors have
been completed and no task preceding it in
the (priority) list is ready to run.

Probably the most significant and the
earliest contributions on generating
bounds for suboptimal multiprocessor
schedules have been made by R. L. Gra-
ham [17-19]. It was in connection with the
study of so-called multiprocessor anoma-
lies that the bounds discussed here were
developed. These anomalies, cited in ear-
lier investigations (see [18]), arise from
the counterintuitive observation that the
existence of one of the following conditions
can lead to an increase in execution time:

1) Replace a given task l istL by another
l i s tL ' leaving the set of task times t~,
the precedence order 4 , and the num-
ber of processors n unchanged;

2) Relax some of the restrictions of the
partial ordering;

3) Decrease some of the execution times;
4) Increase the number of processors.
Graham has developed a general bound

by executing a set of tasks twice. During
the first execution the tasks are character-
ized by the parameters tL, 4 , L, n, and oJ
(the length of the schedule) and during the
second execution by tL', < ' , L ' , n', and co'
such that t~' -< tL, every constraint of 4 ' is
also in 4, i.e., 4 ' is contained in 4 . The
result of this general bound is that

¢o'/¢0 <-- 1 + [(n - ~/n'].

Graham has shown that this bound is the
best possible, and for n = n' the ratio 2 -
1/n can be achieved by the variation of any
one of L, tL, or 4.

The anomaly that results when task ex-
ecution times are reduced is referred to by
Manacher [27] as a "Richard's anomaly"
since anomalies of this type were appar-
ently first discussed by Richards [35]. Re-
sults of simulations reported by Manacher
showed that approximately 80% of all test
cases displayed Richard's anomaly. Man-
acher developed an algorithm to provide
"stability in a strong sense" such that the
completion time of all tasks in a task list is
not increased by reducing the execution
time of any of the tasks. This is accom-
plished by adding "a modest number" of
precedence constraints to the original par-
tial ordering. Manacher also considered
the stability problem for the case in which
multiple initial tasks have different start-
ing times.

In the preceding discussion it was as-
sumed that once a task list is created it
remains fLxed or static until all tasks in
the list are executed. A variation of this,
the dynamically formed list [18], seeks to
redefine the list every time that a proces-
sor becomes free. When this occurs, the
task that heads the "longest chain of unex-
ecuted tasks" (in the sense that the sum of
the task times in the chain is maximal) is
executed first. Let ~OL be the finishing time
for the set of tasks executed in this man-
ner, and let ¢Oo be the minimum finishing
time. Using the general bound cited ear-
lier, we find OiL/¢00 --< 2 -- l/n, since the
dynamically formed list amounts to re-
placing L by L'. Graham [18] has devel-
oped a slightly better best-possible bound
given by

OJ'L/OJ O ~-~ 2 - - [2 / (n + 1)].

An alternative to this approach is to
assign to a ready processor the task whose
execution time plus the execution time of
all of its successors is maximal. If a set of
tasks executed in this manner has a finish-
ing time of ¢0M, then tOM/COO is also bounded
by the preceding expression.

A special case for the "dynamic longest
chain" approach occurs when < is empty,
i.e., when the tasks are independent. For
this case, Graham produced a best possible
bound given by

¢OL/OJO --< 4 /3 -- l/3n.

Computing Surveys, Vol. 9, No. 3, September 1977

192 • M. J . Gonzalez, Jr .

As stated earlier, the primary reason for
the development of these bounded expres-
sions is to provide good suboptimal sched-
ules while investing only a fraction of the
computational effort required to generate
an optimal result. Suppose that upon ex-
amination of a set of r tasks to be sched-
uled it is determined that the set is too
large for an enumerative approach. Then
the following alternative appears promis-
ing (again for the case < = 0): optimally
schedule the k longest tasks (k - 0), and
schedule the remaining r - k tasks in an
arbitrary manner. The bound developed
by Graham for this approach is given by:

co(k) < l + 1 - 1 I n

¢0o - 1 + [k / n] '

where n is the number of processors being
used. Two special cases exist for this re-
sult. When k = 0,

co(0)/eo --< 2 - 1In .

This was the bound developed for the ini-
tial general bound for n = n'. If k = 2n,

¢o(2n)#eo < 4/3 - 1 / 3 n .

Thus the two previous results were simple
special cases of a more general result.

In a later reference [19], Graham ad-
dresses the reverse question: Given a fixed
deadline, what is the minimum number of
processors required? (Recall that T. C. Hu
[20] addressed this question for the special
case of a rooted tree.) If it is assumed
that < specifies no relation (that is, tasks
are independent), then the problem re-
duces to the one-dimensional cutting-stock
problem as well as a special case of the
assembly-line balancing problem. In ef-
fect, the problem can be viewed in the
following manner. Assume that a set of
objects are to be placed in a set of identical
boxes. Assume that the objects all have
the same length and width (but not
height) and these two dimensions exactly
match the corresponding dimensions of the
boxes. The problem then becomes one of
minimizing the number of boxes to contain
the objects. If we equate tasks to objects
and boxes to processors, then the heuris-
tics developed by Graham can be used to
find upper bounds for the minimum num-

ber of processors. An in-depth t rea tment of
this subject is given by Graham in [42].

Thus we see that, for the special case in
which there is no precedence, the results
from another discipline can be used to ob-
tain good suboptimal results with signifi-
cant decreases in computational require-
ments. Heuristic approaches to the prob-
lem discussed here and the flow-shop prob-
lem discussed earlier are considered in
[24].

Longest-path algorithms have also been
investigated by Kaufman [23] for tree-
structured graphs. The environment al-
lows unequal task times but does not allow
preemption. In a manner similar to that of
Muntz and Coffman [30], tasks with
weights greater than one are represented
by a string of unit-weight tasks whose sum
equals the weight of the original task.
Representing the graph in this manner
allows one to determine the optimal non-
preemptive solution using Hu's algorithm,
since the graph is a tree. Kaufman's long-
est-path or G algorithm, however, does not
allow a processor to be preempted from a
task upon completion if that task is a
member of the string of tasks representing
a non-unit-weight task.

If COp represents the optimal preemptive
schedule, COn represents the optimal non-
preemptive schedule, and COG represents
the schedule determined by the G algo-
rithm, then the bounds obtained by Kauf-
man are

COp < car <-- COc ~ COp + k - [k / n] ,

where k is the weight of the largest task in
the original graph and n is the number of
processors available to any of the algo-
rithms.

Adam, Chandy, and Dickson [1] have
compared through extensive simulation
the performance of several list schedules
made in an unrestricted environment. The
environment of Adam, et al., allows for
general graph structures, two or more
processors, unequal task durations, and no
preemption of tasks. 5 The five heuristics
studied are:

1) HLFET (Highest Levels First with

5 These heur is t ics were also compared in a nondeter-
minis t ic env i ronment .

Computing Surveys, Vol. 9, No. 3, September 1977

Determinis t ic Processor S c h e d u l i n g • 193

Estimated Times). The term "level"
as used here refers to the sum of the
weights of all vertices in the longest
path from a task to the terminal
node. (Since we are not assuming in-
dependent tasks, predecessor tasks
must be completed before a task can
be initiated);

2) HLFNET (Highest Levels First with
No Estimated Times). In effect, all
tasks are assumed to have equal task
times;

3) RANDOM. Tasks are assigned priori-
ties randomly;

4) SCFET (Smallest Colevels First with
Estimated Times). A colevel of a task
is measured in the same manner as
its level, except that the length of the
path is computed from the entry node
rather than from the terminal node.
Priority is assigned according to co-
level (i.e., the smaller the colevel, the
higher the priority);

5) SCFNET (Smallest Colevels First
with No Estimated Times). SCFNET
is the same as SCFET except that all
tasks are assumed to have equal du-
ration. This amounts to an earliest
precedence partition if execution
times are ignored.

Extensive simulations based on real and
on randomly generated graphs show that
the order of accuracy among the graphs is:
HLFET, HLFNET, SCFNET, RANDOM,
and SCFET. The near-optimal perform-
ance of HLFET again confirms the useful-
ness of longest-path schedules when the
measure of performance is minimum com-
pletion time. The level of performance
achieved by Adam, et al. (within 4.4% of
optimal) for longest-path scheduling is
comparable to that reported by Manacher
in [27] (15%). The near-optimality of long-
est-path or critical-path scheduling has
also been confirmed by Kohler [47], who
demonstrated that the performance of this
heuristic increases as the number of proc-
essors increases.

Recall that in an earlier discussion the
objective was to minimize mean flow time
for a single processor. For a set of m proc-
essors (m - 2) and a set of independent
tasks, if all tasks are scheduled according

to the shortest-processing-time (SPT) dis-
cipline, then the resultant schedule is
guaranteed to display a minimum mean
finishing time [11]. The SPT discipline
does not necessarily minimize the maxi-
mum finishing time, however. (The prob-
lem of minimizing the maximum finishing
time of a set of independent tasks on two
processors-and, therefore, on more than
one processor- i s known to be NP-hard,
i.e., not likely to be solvable by a nonenu-
merative procedure.) Evidence that two
SPT schedules with the same mean finish-
ing time do not yield the same finishing
time is shown in Fig. 1 5 - w h e r e SPT*
denotes the minimum-finishing-time SPT
schedule for the same three processors and
set of tasks. Bruno, Coffman, and Sethi [3]
have compared the finishing time charac-
teristics of the optimal SPT schedule to
those of the optimal schedule and devel-
oped the following bound:

OJsPr*/OJo~r <- 2 - lira.

Coffman and Sethi [42, 50] have shown
that the longest SPT schedule is at most
50% longer than the SPT* one. If the list of
nondecreasing tasks is assigned in rota-
tion to the m processors, this figure can be
reduced to 33% if the longest m tasks are
assigned largest-first on the m processors.
Assigning all sets of m tasks largest-first
drops the bound to at most 25% worse.

By forming longest-processing-time
(LPT) schedules (which tend to maximize

T A B L E III. TASK PROCESSING TIMe.S FOR A SET OF
TASKS

T P,
1 1
2 2
3 4
4 4
5 5
6 8

P1 1 T4

(a) (b)
FIGURe. 15. Comparison of STP and STP* schedules

for three processors and the tasks l isted in Table
III. (a) STP schedule; (b) STP* schedule.

Computing Surveys, Vol. 9, No. 3, September 1977

194 • M. J . Gonzalez, J r .

P2 T5 T4

0 2 4 6 8 0 2 4 6 8

(a) (b)
FIGURE 16. Comparison of LPT and RPT schedules

for three processors and the tasks l isted in Table
III. (a) LPT schedule; (b) RPT schedule.

mean finishing time but minimize the
maximum finishing time) 6 and then ar-
ranging the tasks assigned to a processor
in SPT fashion, the so-called RPT disci-
pline produces schedules with good maxi-
mum-finishing-time and near-optimal
mean-finishing-time properties, as shown
in Fig. 16 [3].

Ramamoorthy, Chandy, and Gonzalez
[32] use the concept of precedence parti-
tions to generate bounds on processing
time and the number of processors for
graph structures whose nodes require unit
execution time. As indicated earlier, prec-
edence partitions group tasks into subsets
to indicate the earliest and latest times
during which tasks can be started and still
guarantee minimum execution time for
the graph. This time is given by the num-
ber of partitions and is a measure of the
longest path in the graph. For a graph of l
levels, the minimum execution time is 1
units. In order to execute a graph in this
minimum time, the absolute minimum
number of processors required is given by

max {[Lj N Ejl}, 1 - j <- l,

where L~ and E~ refer to t h e f h latest and
earliest precedence partitions, respec-
tively, and Ixl represents the cardinality of
the set x. Ramamoorthy, et al., refer to the
tasks contained in Lj N Ej as essent ial
tasks . Those tasks contained in t h e f h sub-
set given byL~ N Ej must be ini t ia tedj - 1
units after the start of the initial task in
the graph to guarantee minimum execu-
tion time. In a manner similar to that of T.
C. Hu [20], the authors develop a lower
bound for the minimum number of proces-

6 Denning and G. S. Graham [52] have shown, how-
ever, t ha t i t is posmble for an LPT schedule to dis-
Phlay the worst-case f inishing t ime characteris t ics of

e bounds developed by R L. G r a h a m [18] for an
arb i t ra ry schedule compared to the optimal one.

sors when the execution time is allowed to
exceed l and for the minimum execution
time when the number of processors is
fixed. A rooted tree structure for the graph
is not required. The L-partition is also
used by the authors to develop lower and
upper bounds for the minimum number of
processors required to process a graph in
the least possible time.

Ramamoorthy, et al., developed algo-
ri thms to determine the minimum number
of processors required to process a graph in
the smallest possible time and to deter-
mine the minimum time to process a task-
graph given k processors. The second of
these algorithms is modified to allow for
the scheduling of graphs with unequal
task durations. A complication in this case
is that it is often desirable to keep a proces-
sor idle even when there is something to
do. Figure 17b, for example, is an optimal
schedule for the graph of Fig. 17a and re-
quires 15 units. If Processor 2 is assigned
to Task 6 upon completion of Task 3, how-
ever, the time required is 17 units, as
shown in Fig. 17c.

The computational time required to ob-
tain the optimal solution by means of
these algorithms is considerable. This

PI
P2

0

~ 2 1 1

X

(a)

2 4 6 8 I0 12 14
(b)

, , ~ , , , ,
0 4 6 8 I0 12 1 16

FIGURE 17. Illustration of the effects of dehber-
ately idling a processor. (a) Task graph for a set of
tasks; (b) Optimal schedule; (c) Schedule when
processors are activated as soon as possible.

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling • 195

time was significantly reduced by means
of two heuristics that yielded the optimal
result most of the time. In Heuristic A, no
processor is deliberately idled, and tasks
are chosen according to their position in
the L partitions. In Heuristic B, essential
tasks are chosen first. Of the two, Heuris-
tic A was the faster; in all the cases tested
the heuristics also yielded the optimal so-
lution.

The bounds discussed in the preceding
paragraphs have been improved by Fer-
nandez and Bussell [12] using the critical-
path approach. For a given graph there
exists a path called the critical path, from
the entry node to the exit node, which
defines a minimum execution time for the
graph. (This concept does not require
equal task times.) Given the critical path
execution time top, there exists a "comple-
tion interval" (based on earliest and latest
start times) for each task in the graph,
during which that task must be completed
in order that the completion time not ex-
ceed tcp.

In arriving at a lower bound on the
number of processors, Fernandez and Bus-
sell consider integer intervals between 0
and tcp. Within each of these intervals,
tasks are shifted to give minimum overlap
within the interval. The average number
of processors required within an interval
represents the minimum number of proc-
essors required for that interval. If all such
intervals are examined, the maximum av-
erage value rounded up to the nearest in-
teger represents the minimum number of
processors required to process the graph in
minimum time.

Similar concepts are used to determine
the minimum execution time when the
number of processors is fixed. During each
interval a certain amount of processing
must take place to ensure that total execu-
tion times does not exceed tcp. If the num-
ber of processors used is less than a certain
minimum, then each interval will contrib-
ute an amount of time in excess of what it
would contribute if tep is to be satisfied.
The maximum deficit contributed by all
intervals represents the minimum amount
of time over and above tcp to process the
graph.

In a later study, Bussell, Fernandez,
and Levy [4] address the problem of de-
signing algorithms for minimizing the
number of processors required to execute a
schedule in a given time and for minimiz-
ing the execution time given a fixed num-
ber of processors. Schedules that result
from these objectives are referred to as
processor-optimal schedules and time-opti-
mal schedules, respectively. An environ-
ment consisting of a set of tasks, a partial
ordering, unequal task times, and no
preemption of active tasks is assumed.

Reduced to the simplest terms, their al-
gorithm consists of adding precedence con-
ditions (i.e. additional arcs) to the original
graph at those points in the graph where
the number of candidate tasks exceeds the
number of processors. The effect is to dis-
tribute processor demands throughout the
length of the graph, without adversely af-
fecting the overall execution time. As is
the case for the Ramamoorthy, Chandy,
and Gonzalez algorithms cited earlier [32],
the actual description and implementation
of the algorithm and its component parts is
considerably more difficult than the basic
premise on which the algorithm is based
would suggest. This is borne out in both
cases by appreciable computational time
on large computer systems. The alterna-
t i v e - enumera t ion- i s , of course, much
less desirable. Ramamoorthy, et al. [32]
provide suboptimal heuristic alternatives
to the optimal solution, and Bussell, et al.
[4] provide suboptimal alternatives which
can be implemented interactively. Both of
these efforts emphasize once again the dif-
ficulty of obtaining optimal solutions in
the general scheduling environment.

Liu and Yang [26] have developed
bounds for the minimum completion time
of an arbitrary set of tasks when the tasks
are not all independent and the processors
are not necessarily identical.

Comparison of Preemptwe and Non-
preemptive Schedules The minimiza-
tion of completion time for some special
cases has been discussed by Coffman and
Graham in the previously cited work con-
cerning optimal nonpreemptive two-proc-
essor schedules [10]. The pivotal point in

Computing Surveys, Vol. 9, No. 3, September 1977

196 • M. J . Gonza lez , J r .

(a) (b)

T21 T61
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 6'

(c) (d)
FIGURe. 18. Comparison of optimal preemptive and nonpreemptive schedules. (a) Task graph G; ,(b) Task

graph G~ (W = 1); (c) Optimal nonpreemptive schedule corresponding to Graph G; (d) Optimal schedule
corresponding to Graph G~.

the comparison is the ability to transform
a graph G with arbitrary mutual ly com-
mensurable task weights into a Graph Gw
having execution times ofw time units. As
before, w is the largest task weight in G
which evenly divides all the task weights
in G. If preemptions axe allowed only at
times that are multiples of w, then an
optimal nonpreemptive schedule for Gw
can be viewed as an optimal preemptive
schedule for G. For example, Fig. 18 shows
the performance improvement achieved by
allowing preemption at the end of each
unit interval (i.e., w = 1) [10]. Allowing
preemptions at the end of each unit inter-
val results in a performance improvement
of 7/6.

Coffman and Graham observe that no
benefit is achieved by allowing preemption
more frequently than every w/2 units and
show that, for an arbitrary number of
processors m (m - 1), the length con of a
nonpreemptive schedule is related to the
length cop of a preemptive schedule by:

OJN/¢~ P ---~ 2 - - (l / m) .

Schedules to Mimmlze Mean Flow Time

This section considers the generation of
schedules when the objective is to mini-
mize mean flow time for a set of independ-
ent tasks. Earlier it was indicated that
this measure of performance can be mini-
mized for a set of identical processors by
scheduling the tasks according to the SPT
discipline. In this section, however, the
processors are allowed to be nonidentical

or heterogeneous. The results related here
provide evidence that scheduling consider-
ations are becoming more sophisticated.
These considerations reflect the growing
acceptance of multiple and distributed
processor systems and the practicality of
increasing system capacity or replacing
failed or obsolete components by adding
nonidentical replacements.

In their study Bruno, Coffman, and
Sethi [3] develop an efficient algorithm for
scheduling independent tasks to reduce
mean finishing time (i.e., mean flow
time). Because the processors are not iden-
tical, it is no longer valid to use a single
value to represent a task's execution time.
Instead it is necessary to consider task
execution time on each of the processors. A
convenient way to do this for m processors
and n tasks is by means of an m times n
matrix [vu] such that the nonnegative inte-
ger vo denotes the execution time of task Tj
on processor P~. An example of this matrix
for five tasks and three processors is:

[r,] = 4 1 5
2 3 2

The corresponding optimal schedule is
shown in Fig. 19.

From the matrix [v~], the n m × n matrix
Q is formed, where

F [Tu] -I

Ln[~ ' . l I

Computing Surveys, Vol. 9, No. 3, September 1977

Determinis t ic Processor S c h e d u l i n g • 197

l ~ T3 ! f f / ' / / / / / / / / / /A

i , i i i t

0 1 2 3 4 5

F m u ~ 19. I l lus t ra t ion of opt imal schedule us ing
Bruno, et al., a lgor i thm.

poten t ia l
co~ ffie:[en~s .ulahine

1 8 2 2 5 2 0 3

3 6 [2 5 3
4 (25"} 3 2

(a)

A set of n elements in this matrix is
called a feasible set if no two elements are
in the same row. The cost of this set is the
sum of the weights of the n elements. The
objective, then, is to find a feasible set
with the smallest possible cost. The au-
thors formulate the problem as a transpor-
tation problem and arrive at a nonenumer-
ative optimal solution.

If a priority or urgency measure w is
assigned to each task and the processors
are assumed to be identical, then Bruno,
et al., show that the problem is NP-hard.
For m processors and n tasks, however,
Eastman, Even, and Isaacs [51] show that
the following is a lower bound for the
weighted mean flow-time Fw(m):

Pw(m) -> [(m + n)/m(n + 1)]Rw(1),

where Pw(1) is the weighted mean flow
time with one processor.

The optimal solution of Bruno, et al., is
used by Clark [8] to generate simple heu-
ristics which provide near-optimal mean°
finishing-time schedules. Clark assumes n
independent tasks on m nonidentical proc-
essors and, like Bruno, et al., uses a ma-
trix P to describe Po, the processing time of
task i on processor j .

In his first result Clark observes tha tPo
can be expressed as "the product of a time
associated with job i and an efficiency fac-
tor associated with processor j , tha t is, Pz
= p~wj." In the resulting algorithm, a ma-
trix of processing times and processor co-
efficients is formed as shown in Fig. 20a
[8]. Note that the processing times are
arranged so that P l ~ P2 - - " ' " ~ P5.
Starting with the top row of the matrix,
the smallest coefficient is circled. This
means that the job found in the first row of
the matrix (Job 1 in this example) is as-
signed to the processor corresponding to
the circled coefficient (Processor 3 in this
example). The second row of the matrix is

1 1 2 , 3 h l h2 tl3

1 16 20 ~ 1 1 1
2 ~ 15 6 1 1 2
3 12 15 (~ 2 1 2

8 ~ 4 2 1 3
5 2 2 5 ~) 2 2 3

(D)

P2 T4

0 2 ~ 6 8 10 12 14

{c)
FmuaE 20. Illustration of Clark's algorithm. (a)

Matrix of processing times and job efficiencies,
and selection of machines; {b) Alternate method of
selecting machines; (c) Optimal schedule.

formed by copying the uncircled coeffi-
cients from the previous row and increas-
ing the value of a circled coefficient by the
corresponding w~. Repeating the above
process n - 1 times (with arbitrary selec-
tion in case of ties) results in a schedule
with optimal mean finishing time. The op-
timal schedule for this example and the
calculation of the flow time are shown in
Fig. 201o. In a variation of this approach,
the entire matrix is filled initially with
explicit processing times, and a matrix of
coefficients is formed in a manner similar
to that outlined above. Let the coefficients
in a particular row i be hi, h2, • ' ", hm such
tha t the coefficients in each row represent
the possible sequence positions on the
three processors, counting from the end of
the schedule, for the corresponding job.
Then the minimum h~ p~ is chosen, p~ is
circled, and h~ is increased by one in the
next row. (See Fig. 20c.) The value o f f for
this example is:

F = w~2 + w2P4 + 3waPs + 2wap3 + lwaP~
= 2.6 + 2.5.4 + 3.1.1 + 2-1-6 + 1-1"8
= 45.

Since machine factors are not used, this
latter approach has more general applica-

Computing Surveys, Vol. 9, No. 3, September 1977

198 • M. J . Gonza lez , J r .

bility; however, it does not guarantee opti-
mality. Because of its simplicity, Clark
uses this approach throughout his subse-
quent work and refers to it as the quick-
and-dirty (QAD) algorithm. (A variation
of this algorithm, QAD*, sorts jobs on each
machine in SPT order since this guaran-
tees tha t flow time on each machine is
minimized.) Clark then proves that there
exists a renumbering of the jobs (a permu-
tation of the rows in the processing-time
array) such that QAD yields a schedule
with minimal flow time (and, equiva-
lently, mean flow time).

Liu and Yang [26.] have developed an
algorithm for minimizing mean flow time
for a set of independent tasks and the spe-
cial case consisting of one processor of
speed b plus n standard processors. The
authors also provide a bound which com-
pares the performance with respect to
mean flow time of a homogeneous system
of n + 1 standard processors to that of a
nonhomogeneous system containing n
standard processors plus one processor
which is b times more powerful than a
standard processor.

Special Scheduling Environments

In this section new constraints are added
to the more common constraints assumed
in the preceding section. These new con-
straints are in the form of resource classes,
periodic jobs with hard deadlines, and in-
termediate deadlines.

Systems with Limited Resources

The results surveyed in this paper thus far
have been concerned primarily with the
allocation of processors. Computational re-
quirements have been expressed in terms
of processing time and precedence condi-
tions. It has therefore been assumed tha t a
processor is the only resource that a job or
task requires. Recognition of the fact that
a task may require resources other than a
processor has recently led to investigations
of "systems with limited resources" in
which it is assumed that requirements ex-
ist for multiple resources tha t are limited

in number. The primary references in this
area are by Garey and Graham [16, 42]
and Yao [40].

The Garey and Graham model aug-
ments a standard model-consis t ing of a
set of r tasks of unequal duration related
by a precedence order and executed on a
nonpreemptive b a s i s - b y a set of n identi-
cal processors. In addition it is assumed
that a set R = {R ~, • • . , Rs} of resources is
available. If task T, requires resource R~,
we assume that the requirement exists
throughout the execution of the task. The
need of task T~ for resource R, is denoted
by p~, where 0 - p~ -< 1. Let r, (t) denote
the total amount of resource R, which is
being used at time t. Then r, (t) = ~ po for
all T~ being executed at time t and r~ (t) <-
1. The basic problem considered is to what
extent the use of different list schedules for
this model can affect the finishing time oJ.

Suppose that for two arbitrary lists L
and L ' the augmented system of n proces-
sors executes the set of r tasks with the
resulting finishing times ¢o and ¢o' respec-
tively. For this environment Garey and
Graham provide the following results:

1) Fo rR = {R1} (i.e., when there is only
one resource other than processors in
the system), ~0ko' -< n;

2) For R = {R ~} and all tasks independ-
ent, eo/e,' ~ 3 - l /n;

3) For R = {R1, R2, "" ", R~}, all tasks
independent, and n ~ r, eo/oJ' - s + 1.

The net effect of these results is to indi-
cate tha t addition of resource considera-
tions to the standard model causes an in-
crease in the worst-case behavior bounds.

Yao [40] uses essentially the same model
as Garey and Graham except that all tasks
require one uni t of time to complete. Using
this model, Yao provides bounds for a
large number of cases, based on the num-
ber of tasks, the number of processors, and
the rules used to form list schedules. Like
Garey and Graham, Yao observes that his
algorithms behave less well when resource
constraints are eliminated. A related ob-
servation is that investing some effort in
the preparation of a list can lead to better
results.

In a somewhat less abstract sense, Ka-
fura and Shen [22] assume tha t individual

Computing Surveys, Vol. 9, No. 3, September 1977

Deterministic Processor Scheduling

tasks require a minimum amount of mem-
ory in addition to a certain amount of proc-
essing time. A system of m identical proc-
essors and n independent tasks is assumed
such that each processor is associated with
a private storage device of a given capac-
ity. When a processor completes a task it
examines the list of tasks and selects the
first task whose memory requirement is
less than or equal to its own memory ca-
pacity. Assuming a nonpreemptive envi-
ronment in which no processor is allowed
to remain idle if there is a task in the task
list that it could execute, the authors de-
velop bounds and heuristic strategies for
selecting tasks on the basis of time and
memory requirements.

I F1 El
I ['--3

(a)

Pertodic Job Schedules

Periodic jobs were considered earlier in
this survey, in the section on single-proc-
essor schedules. At that time, in addition
to limiting attention to a multipro-
grammed uniprocessor environment,
preemption of the periodic jobs in order to
meet the deadline of a higher-priority job
was permitted. Multiprocessor schedules
for a set of independent periodic jobs on a
nonpreemptive basis [38, 41] are consid-
ered here.

In this section we assume that all tasks
are simultaneously available. The objec-
tive is to minimize the number of proces-
sors required to execute a job set while
guaranteeing that the periodic iterations
of the individual jobs begin and end ex-
actly on time.

If we let E~ represent the maximum exe-
cution time of one iteration of job J, and if
we represent the execution frequency by f~,
then J~ can be expressed by these two pa-
rameters as Jt: (f~, E,), 1 -- i -- n, where n
is the number of jobs to be scheduled. The
repetition period is represented by 7',, the

TABLE IV. JoB CHARACTERISTICS FOR A SET OF
JOBS WITH BINARY FREQUENCY DISTRIBUTION

Jobs Frequency Permd Executton ttme

J1 1/4 4 1
J2 1/8 8 2
J3 1/16 16 11/2
J4 1/32 32 5
J5 1/64 64 3

c 1 ~ I I

El

• 1 9 9

[]
! ~ i) ! l)

(b)

Figure 21. Scheduling of permdlc jobs with a bio
nary frequency distribution (a) Timing diagram
for the first two jobs of Table IV; (b) Reduction m
processor requirements through the merging of
jobs.

inverse of ~. In the following discussion
two classes of jobs are considered: 1) If the
n jobs, J i to J , are arranged such that f, >
f~+i, assume that f~ = 2~+l-i .e. , all jobs
have a frequency which is related to the
frequency of the highest-frequency job by
some power of two; 2) Jobs of any fre-
quency are allowed.

Periodic jobs with a binary frequency
distribution A set of jobs satisfying the
constraints of this section is shown in Ta-
ble IV. Figure 21a shows J1 and J2 sched-
uled on separate processors, and Fig. 21b
shows a schedule that reduces the number
of processors from two to one. The prob-
lem, of course, is to determine the mini-
mum number of processors required for
the entire set without having to consider
all possible alternatives.

Notice that the merged form of two jobs
shown in Fig. 21b creates a new periodic
composite job with a period of 71 (equal to
2T1) and an execution time of ~1 (equal to
TI + E0. In addition two idle times are
created: I1, the periodic idle time with
duration 71 - ~1, and h31 the forced idle
time of length I1 - E2. (The notation hi'
indicates that the forced idle time is
formed when Jj is merged with J,.) In at-
tempting to merge further jobs into the
schedule it is not necessary to consider the
placement of jobs in the interval repre-

Computing Surveys, Vol. 9, No 3, September 1977

200 * M. J . Gonzalez, Jr .

sented by the forced idle time. Instead, for
this environment a schedule requiring the
minimum number of processors is gener-
ated by the following algorithm:

1) L e t J l * , J 2 * , "" • represent the subset
of jobs assigned to processor P1, P2,
• • .. Initially Jl* -- J2* ~b and
I1 = 12 c¢. Whenever a job J~
is assigned to an empty Jz*, I~ = T~ -

2) To assign J,, find the least l such that
E i -< It, and assign J, to Jl*.

The optimal schedule for the set of jobs
shown in Table IV is shown in Fig. 22.
This result has been extended to the case
where]~ = k(f,+l) and k is a positive inte-
ger greater than 1.

Periodic jobs wi th an unconstrained fre-
quency distribution In this section the
frequency relationship between jobs as-
sumed in the previous section is elimi-
nated. As might be expected, the problem
is now much more difficult, and no optimal
solution has been found. Instead, heuristic
approaches were developed and compared
to each other through extensive simula-
tion. These heuristics fall into three
groups:

1) Frequency Decreasing Order. Jobs
are arranged in frequency-decreasing
order and are to be assigned in this
order.

2) Load Factor Decreasing Order. The
job load factor of J,, denoted by Li, is
defined as follows: L~ = Ei/Ti.

3) Preserving Minimum Length of the
Critical Interval. The critical inter-
val between two jobs is defined as the
minimum interval between the com-
pletion time of the first job and the
initiation time of the second job at
some point in the schedule. (The de-
termination of this interval does not
include the first iteration of the two
jobs, where by definition the initia-

J
J i , , a ,

8 12 16 20 24 28

Fmumz 22.

tion of the second job immediately
follows the completion of the first
job.)

In testing these heuristics, job sets were
classified into two types. In Type I job
frequencies are multiples of more than two
base frequencies, and in Type II job fre-
quencies are multiples of two or fewer base
frequencies. As might be expected, out-
standingly better performance of one algo-
rithm over the others in all cases was not
found. In general, however, Heuristic 2
performed exceptionally well for Type I
problems. Heuristic 3 performed best for
certain Type H problem sets, and both
Heuristics 1 and 2 performed well on job
sets in which Heuristic 3 performed poorly.
Not surprisingly, the number of processors
required for Type II problem sets was con-
siderably smaller than the number re-
quired for Type I sets.

Some very interesting anomalies were
discovered as well. In many cases it was
found that decreasing the job frequencies
or the job execution times can result in an
increase in the number of processors re-
quired. Conversely, processor require-
ments can be reduced by increasing the job
frequencies or execution times, i.e., by in-
creasing processor load.

Deadline-Driven Schedules

We have already noted the use of the term
"deadline-driven scheduling" for an envi-
ronment consisting of a single processor
and a set of periodic tasks of known fre-
quency and period. In this case we con-
sider a rnultiprocessor environment in
which tasks of unequal execution times
are related by a given precedence struc-
ture and are to be executed in a non-
preemptive manner.

In particular, Manacher [27] considers
the case in which terminal and nonter-
minal tasks require different completion

[Z :1
i a i i ~ i I

3 2 3 6 4 0 4 4 4 8 5 2 5 6

Optimal schedule for the jobs of Table IV.

Computing Surveys, Vol. 9, No. 3, September 1977

FmURE 23

Deterministic Processor Scheduling • 201

~N O/O

/ / I "x \
20 I0 I0

7 T 1 ~ 10/45
@5/50 ~ 5//*5

A graph with multiple deadlines.

times. An example of a graph model satis-
fying these requirements is shown in Fig.
23. In this figure a pair of numbers of the
form A]B next to a node represents a task
whose execution time is A units and which
must be completed B units after the start
of execution.

Manacher's heuristic solution to this
problem is a variation of the longest-path
schedules considered earlier. In this case,
however, multiple longest paths or critical
paths can be defined for the tasks con-
rained in paths that contain tasks with
deadlines. Manacher's procedure is, in ef-
fect, a variation of the latest-precedence
partition for unequal task times and mul-
tiple deadlines.

In early work on scheduling with dead-
lines, McNaughton [28] dealt with the case
in which there is a deadline associated
with each task and a loss for failure to
meet the deadline. In the case of an abso-
lute deadline, a task has no value at all if
it is not completed by the deadline. In a
relative-deadline situation, the loss is zero
up to a certain point, and a monotonic
increasing function of the time of comple-
tion beyond that point. His principal result
with respect to multiple processors as-
sumes that a set of independent tasks all
have a deadline at time zero, i.e., that all
tasks are simultaneously available and
have equal priority. For this case, Mc-
Naughton shows that no preemptions are
necessary in order to minimize the loss
function.

CONCLUSION

This discussion has attempted to survey
some of the more prominent results in the
scheduling of deterministic job sets. It was

assumed that task graphs are acyclic with
no branching and that task execution
times are exactly known. It should be re-
membered, though, that in many com-
puter-system environments these assump-
tions are not valid. Baer [2] discusses some
of the implications of cycles and branches
in graphs in addition to discussing some of
the results considered here. Chandy [1, 6]
among others considers schedules in which
task execution times are not exactly
known. A sizeable portion of Conway,
Maxwell, and Miller's book [11] is devoted
to what they call the general n-job m-ma-
chine job-shop problem, and indicates the
complexity of this problem.

This survey has shown that efficient op-
timal algorithms exist in only a few special
cases and suggests that perhaps future ef-
forts should concentrate on the study of
heuristics. The original objective of identi-
fying deterministic schedules for use in
practical computer-scheduling environ-
ments is likely to remain unfulfilled. Al-
though these results may be of interest in
operations research where the assump-
tions of deterministic schedules often ap-
ply, the only approach to practical job-
scheduling problems may lie with either
well-tested heuristics or statistical meth-
ods (the latter representing a new ap-
proach to the problem).

ACKNOWLEDGMENTS

The author would like to thank the referees for their
many valuable suggestions regarding the organiza-
tion and contents of this paper. Many thanks also to
Peter J. Denning for additional suggestions, includ-
ing the use of the term NP-hard, toI. H. Sudborough
of the Computer Sciences Department at Northwest-
ern University for his assistance in the preparation
of the section on the efficiency of algorithms, and to
Mark Kerstetter, Computer Sciences Department,
Northwestern University, for the many contribu-
tions made by him throughout this effort.

CLASSIFICATION OF REFERENCES

Table V provides a concise annotation to most of
the references cited in this survey. References are
categorized according to whether the study reported
m the reference considers a system with exactly one,
exactly two, or two-or-more processors, or a flow-
shop environment. Task t imes can be equal (i.e., all
tasks of umt duration) or unequal. Precedence con-

Computing Surveys, VoL 9, No. 3, September 1977

202 • M. J . Gonzalez, Jr .

REF.

[1]

[3]

[4]

[5]

[7]

[8]

[I01]
[14]~
[46])

[12]

[16]

[17] }
[18]
[19]

[20]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

[29]

[3o1

[32]

[33]

]43] :~1
[44])I

[36]

[37]

[38]

[40]

[41]
[47]

[48]

[50]

[511

[52]

TABLE V. CHARACTERISTICS OF CITED REFERENCES

4# OF PROCESSOR~ TASK
TIMES

I 2 ~2 FLOW
! SHOP 1 al

X X

X X X

X X

X X X

X X

X X X

TASK
PRECEDENCE PREEMPTION LIMITED

RESOURCES
6 TREE!GEN PS BS

DEADLINES

I IDENTICAL MINIMIZE
PROCESSORS OPTIMAL BOUNDS

RESULTS
YES NO ~X F i ~ N~

X X
X X X

X X X X

X X X

X X X

X X X

X X

X

X X

X

x X

x

X X X X X X

X X

X X

X X

X X

X X

X X

X X

X X

X X X I

X X

x x x!
x x

x

x x x

X X

X X X,

X X X

X X X

x x!
X X ,

X X X
x x x i

x x x
x x

X

X

X;

X

X

X

X

X

X

X

X

X X

X

X

X

X X

X X X X

X X X

X X X X

X X X X

X X X

X X X

X X X

X X X X

X

X X

X X X

X X X

X X X

X X

X X

X X X

X X X

X X X

X X

X X X X

X X X

X X X

X X X X

s t ra in ts can be such t h a t tasks are independent (e),
represen t a t ree s t ruc tu re (TREE), or pe rmi t a gen-
eral precedence re la t ionship (GEN). F u r t h e r cate-
gorizat ion]s based on whe the r or not t a sk preemp-
t ion is permi t ted (PS and BS, respectively), w h e t h e r
or not sys tem resources are 1,mited, w he t he r or not
deadhnes m u s t be observed, and w he t he r or not the
processors are identical. The measu re s of perform-
ance used to categorize the references are the min-
imization of the m a x i m u m finishing t ime (MAX F),
the min imiza t ion of the m e a n flow t ime (F), and the
minimiza t ion of the n u m b e r of processors (Np). The
las t two columns indicate w he t he r the cited refer-

ence discusses optimal or apprommate (in terms of
bounds) solutions In general, the presence of an X
in a column means tha t the reference in the corre-
sponding row bases its discussion on tha t categonza-
t,on feature. References tha t are too general or tha t
do not refer to specific scheduling results are omit-
ted.

[1]

REFERENCES
ADAM, T. L., CHANDY, K M., AND DICKSON, J .
R. "A comparison of h s t schedules for para l -
lel processing sys tems ," Comm. A C M 17, 12

Computing Surveys, Vol 9, No. 3, September 1977

Deterministic Processor Scheduling

(Dec. 1974), 685-690.
[2] BAER, J. L. "A survey of some theoretical

aspects of multiprocessing," Computing Sur- [20]
veys 5, 1 (March 1973), 31-80.

[3] BRUNO, J.; COFFMAN, E. G., JR.; AND SETHI,
R. "Scheduling independent tasks to reduce [21]
mean finishing time," Comm. ACM 17, 7 (July
1974), 382-387.

[4] BUSSELL, B.; FERNANDEZ, E.; AND LEVY,
O. "Optimal scheduling for homogeneous [22]
multiprocessors," in Proc. IFIP Congress 74,
North-Holland Publ. Co., Amsterdam, Amem-
can Elsevier, N.Y., 1974, 286-290.

[5] BUTEN, R. E.; AND SHEN, V. Y "A schedul-
ing model for computer systems with two [23]
classes of processors," in Proc. 1973 Sagamore
Computer Conf, on Parallel Processing,
Springer-Verlag, N.Y., 1973, 130-138.

[6] CHANDY, K. M.; AND DICKSON, J. [24]
R. "Scheduling umdentical processors in a
stochastic environment," m Proc. IEEE
COMPCON 1972, IEEE, N Y, 1972, 171-174.

[7] CHEN, N F.; AND LIU, C. L ¢'On a class of
scheduling algorithms for multiproeessor corn- [25]
putmg systems," in Proc. 1974 Sagamore
Computer Conf. on Parallel Processing, Sprin-
ger-Verlag, N.Y., 1974, 1-16

[8] CLARK, D. Scheduhng ~ndependent tasks on [26]
non-~dent~cal parallel machines to m~n~m~ze
mean flow-t~me, Dept. of Computer Science,
Carnegie-Mellon Univ., Pittsburgh, Pa , June
1974.

[9] COFFMAN, E. G., JR.; AND DENNING, P. [27]
J. Operating systems theory, Prentice-Hall
Inc., Englewood Cliffs, N.J., 1973.

[10] COFFMAN, E G., JR.; AND GRAHAM, R. [28]
L "Optimal scheduhng for two processor
systems," Acta Informat~ca 1 (1972), 200-213

[11] CONWAY, R. W.; MAXWELL, W. L.; AND [29]
MILLER, L. W. Theory of schedultng, Add2-
son-Wesley Publ. Co. Inc, Reading, Mass.,
1967.

[12] FERNANDEZ, E B.; AND BUSSEL, B. "Bounds [30]
on the number of processors and time for mul-
tiprocessor optimal schedule," IEEE Trans.
Comp C22, 8 (August 1973), 745-751

[13] FINEBERG, M S ; AND SERLIN, O "Multlpro- [31]
gramming for hybrid computation," in Proc
AFIPS 1967 Fall Jt Computer Conf , Thomp-
son Book Co., Washlngten, D C., 1967, 1-13.

[14] FuJII, M.; KASAMI, T.; AND NINOMIYA,
K. "Optimal sequencing of two eqmvalent
processors," SIAM J Appl Math. 17, 4 (July [32]
1969), 784-789.

[15] Erratum SIAM J. Appl Math. 20, 1
(Jan. 1971), 141.

[16] GAREY, M. R.; AND GRAHAM, R. L "Bounds [33]
on scheduling with limited resources," Fourth
Symp Operating System Principles, 1973 104-
111. (Published as Operating Systems Rev. 7,
4, ACM, N.Y.).

[17] GRAHAM, R. L. "Bounds for certain multi- [34]
processing anomalies," Bell Syst. Tech. J. 45
(1966), 1563-1581.

[18] GRAHAM, R. L "Bounds on certmn multipro-
cessmg anomalies," SIAM J Appl. Math 17,
2 (March 1969), 416-429.

[19] GRAHAM, R L "Bounds on multiprocessing [35]
anomalies and packing algorithms," in Proe

* 203

AFIPS 1972 Spring Jt. Computer Conf.,
AFIPS Press, Montvale, N.J., 1972, 205-217.
Hu, T. C. "Parallel sequencing and assem-
bly line problems," Operations Research 9, 6
(1961), 841-848.
JOHNSON, S. M. "Optimal two- and three-
stage production schedules with setup times
included," Nay. Res. Log. Quart. 1, 1 (March
1954).
KAFURA, D. G , AND SHEN, V.
Y. "Scheduling independent processors with
different storage capacities," in Proc ACM
Natmnal Conf, 1974, Vol. 1, ACM, N.Y.,
1974, 161-166.
KAUFMAN, M . T . "An almost-ophmal algo-
rithm for the assembly line scheduling line
scheduling problem," IEEE Trans. Comp.C°
23, 11 (Nov. 1974), 1169-1174.
KRONE, M. ~'Heuristic programming applied
to scheduling models," in Proc F~flh Annual
Princeton Conf. Mathemattcal Programmmg,
Princeton Univ. Press, Princeton, N.J., 1971,
193-195
LIU, C L.; AND LAYLAND, J.W. "Scheduhng
algomthms for multiprogramming in a hard-
real-time environment," J. ACM 20, 1 (Jan
1973), 46-61
Liu, J. W. S.; AND YANG, A. T. "Optimal
scheduling of mdependent tasks on heteroge-
neous computing systems," in Proc. ACM Na-
tmnal Conf. 1974, Vol. 1, ACM, N Y., 1974,
38-45.
MANACHER, G.K. "Production and stablhza-
tion of real-time task schedules,"J ACM 14, 3
(July 1967), 439-465.
McNAuGHTON, R. "Scheduling with dead-
lines and loss functions," Management Science
6, 1 (Oct. 1969), 1-12.
MUNTZ, R. R.; AND COFFMAN, E. G.
JR. "Optimal preemptive scheduhng on two-
processor systems," IEEE Trans Comp C-18,
11 (Nov. 1969), 1014-1020.
MUNTZ, R. R; AND COFFMAN, E. G.
JR, "Preemptive scheduling of real-time
tasks on multiprocessor systems," J. ACM 17,
2 (April 1970), 324-338.
RAMAMOORTHY, C V.; AND GONZALEZ, M
J. "A survey of techniques for recognizing
parallel processable streams In computer pro-
grams," in Proc AFIPS 1969 Fall Jt. Com-
puter Conf., AFIPS Press, Montvale, N.J.,
1969, 1-15.
RAMAMOORTHY, C. V ; CHANDY, K M.; AND
GONZALEZ, M.J. "Optimal scheduling strat-
egies in a multlprocessor system," IEEE
Trans. Comp. C°21, 2 (Feb. 1972), 137-146.
REDDI, S. S.; AND RAMAMOORTHY, C.
V. "Some aspects of flow-shop sequencing
problem," in Proe. S~xth Annual Princeton
Conf Mathernatzcal Programming, Princeton
Univ. Press, Princeton, N.J., 1972, 650-654.
REDDI, S S., AND FEUSTEL, E. "Analytic and
implementation considerations of two-facility
sequencing in computer systems," in Proc.
1974 Sagamore Computer Conf on Parallel
Processing, Sprmger-Verlag, N.Y., 1974, 205-
206.

RICHARDS, P. T~m~ng properties of mult~pro-
ceNsor systems, Tech. Paper, Rep. No. TD-B60-

Computing Surveys, Vol 9, No. 3, September 1977

204 • M . J . Gonzalez, Jr.

27, Technical Operations, Inc., Burlington,
Mass. August 1960.

[36] SERLIN, O. "Scheduling of time crltlcalproc-
esses," in Proc. AFIPS 1972 Spring Jt Com-
puter Conf., AFIPS Press, Montva]e, N.J.,
1972, 925-932.

[37] SHEN, V. Y.; ANY CHEN, Y.E. "A scheduling
strategy for the flow-shop problem in a system
with two classes of processors," in Proc S~xth
Annual Princeton Conf. Mathematical Pro-
gramm~ng, Princeton Univ. Press, Princeton,
N.J., 1972, 645-649.

[38] Soil J.W. "Scheduling strategies for periodic
jobs in a multiprocessor environment," PhD
Dissertation, Computer Sciences Dept.,
Northwestern Umv., Evanston, Ill. August
1974.

[39] ULLMAN, J .D. "Polynomial complete sched-
uling problem," in Fourth Syrup. Operatzng
System Principles, 1973, 96-101. (Published as
Operating Systems Rev. 7, 4, ACM, N.Y.)

[40] YAO, A.C. "Scheduling umt-tlme tasks with
limited resources," in Proc. 1974 Sagamore
C-omputer Conf. on Parallel Processing, Sprin-
ger-Verlag, N Y., 1974, 17-36.

[41] GONZALEZ, M. J.; AND SOH, J W. "Periodic
job scheduling in a distributed processor sys-
tem," IEEE Trans. Aerospace and Electronw
Systems AES-12, 5 (Sept. 1976), 530-536.

[42] COFFMAN, E G., JR. (Ed.), Computer and
job-shop scheduhng theory, John Wiley &
Sons, N.Y., 1976

[43] REVDI, S. S.; AND RAMAMOORTHY, C.V. "On
the flow-shop sequencing problem with no
walt in process," Operatmnal Research Quart-
erly 23, 3 (Sept 1972), 323-331.

[44] REDDI, S. S.; AND RAMAMOORTHY, C. V. "A
scheduling problem," Operatmnal Research
Quarterly 24, 3 (Sept. 1973), 441-446.

[45] GILMORE, P. C.; AND GOMORY, R.

E. "Sequencing a one state-variable ma-
chine: A solvable case of the travehng sales-
man problem," Operatmns Research (Sept-Oct
1964), 655-679.

[46] MURAOKA, Y. "Parallelism, exposure and
exploitation in programs," PhD Thesis, Com-
puter Science Dept., Univ. of Illinois, 1971.

[47] KOHLER, WALTER H. "A preliminary evalua-
tion of the critical path method for scheduling
tasks on multiprocessor systems," IEEE
Trans Comp. (Dec. 1975), 1235-1238.

[48] LAM, SHUI; AND SETHI, R. "Analysis of a
level algorithm for preemptive scheduling," in
Proc. F~flh Syrup. Ope_rating System Pnnc~-

ieS, 1975, 178-186. (Published as Operating
stems Rev. 9, 5, ACM, N.Y.)

[49] COFFMAN, E. G., JR. "A survey of mathemat-
ical results in flow-time scheduling for com-
puter systems," in Proceedings, GI 73, Ham-
burg, Sprlnger-Verlag, N Y., 1973, 25-46.

[50] COFFMAN, E. G., JR.; AND SETHI,
R. "Algorithms minimizing mean flow time:
scheduling length properties," Acta Informa-
tica 1 (1976), 1-14.

[51] EASTMAN, W L.; EVEN, S; AND ISAACS, I.
H. "Bounds for the optimal scheduling of n
jobs on m processors," Management Science,
(Nov. 1964), 268-279.

[52] DENNING, PETER J ; AND GRAHAM, G.
SCOTT. "A note on sub-expression ordering in
the execution of arithmetic expressions,"
Comm ACM 16, 11 (Nov. 1973), 700-702.

[53] CooK, S. A. "The comp_lexity_ of theorem-
oving procedures," in Proc. 3rd ACM Syrup.
eory of Computing, 1971, ACM, N.Y., 1971,

151-158.
[54] KARP, R.M. "Rednciblhty among combina-

torial problems," in Complexity o f computer
computation, R. E. Miller and J. W. Thatcher
(Eds.), Plenum Press, N.Y., 1972, 85-104.

Computing Surveys, Vol 9, No 3, September 1977

